

Teaching guide and answer key

The EdScratch Lesson Plans Set by Kat Kennewell and Jin Peng is licensed under

a Creative Commons Attribution-ShareAlike 4.0 International License.

Document number: 3.2.4.3.1 Rev 1.2

https://meetedison.com/
http://www.meetedison.com/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

 www.edscratchapp.com 2

About this guide ... 3

What’s in this guide .. 3

Creative Commons licence .. 3

How to use this guide .. 4

Understanding the activity types.. 4

Reading the activity overview .. 5

Using the answer key .. 6

Supplies you will need ... 7

Frequently asked questions ... 8

Before you start .. 12

Get Edison ready ... 12

Set up your programming devices for EdScratch ... 13

Troubleshooting ... 14

Unit overview.. 18

Unit 1: Get started .. 21

Lesson 1: Meet Edison .. 22

Lesson 2: Meet EdScratch... 36

Unit 2: Move it! ... 41

Lesson 1: Sequence .. 43

Lesson 2: Inputs and outputs .. 51

Unit 3: Got loops? .. 69

Lesson 1: Loops ... 71

Lesson 2: Interrupts ... 84

Unit 4: What if… ... 93

Lesson 1: Conditionals .. 95

Lesson 2: Sensing ... 105

Unit 5: Versatile variables .. 125

Lesson 1: Maths and data in EdScratch.. 126

Unit 6: Inventor’s time! ... 144

Lesson 1: Design, build, test, repeat ... 145

Appendix 1: Blank digital display number ... 153

Appendix 2: Calibrate obstacle detection .. 154

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
file:///C:/Users/kat/MicrobricNAS/Change%20Management/Product%20Change%20Notices%20(PCN)/PCN1016%20Edison%20resources%20update%20and%20vaulting/EdScratch/EdScratch-teachers-guide.docx%23_Toc24026648

 www.edscratchapp.com 3

About this guide
This guide offers teachers and instructors overviews, delivery recommendations and

other supporting information for the EdScratch lesson activities available at

https://meetedison.com/robot-programming-software/edscratch/.

The EdScratch activities are designed to allow students to work independently. As

students work through the activities, they will develop a familiarity with computational

thinking and fundamental computer science concepts, mastering a range of related

skills as they progress. This guide outlines more about the concepts to be taught,

approaches to be taken, skills to develop and processes to be learned. Here you will

find strategies, ideas, and further information to help make teaching using Edison

and EdScratch effective, easy and fun.

What’s in this guide
The EdScratch lesson activities are organised into six units – from an initial

preparatory unit to a culminating project-based unit – with each unit containing one

or two lessons. Each lesson contains a mix of structured and open-ended activities

that introduce the key concepts and learning objectives while engaging students in

active exploration of the learnings.

This guide provides an overview and supporting information for all of the EdScratch

units, lessons and activities. In this guide you will find:

• an overview of each unit, including the key learning objectives of that unit,

• an overview of each lesson with a list of all activities in that lesson,

• a dedicated section per activity detailing:

o the activity’s purpose and objectives,

o supporting information including estimated time requirements, supply

requirements, and tips for delivery, and

o an answer key including recommendations on assessing student work.

Creative Commons licence
These teaching recourses have been released under a Creative Commons licence.

You are free to use these resources as they are, translate them, share them or use

them as the base to develop your own customised lessons.

Licence and attribution details

The EdScratch Lesson Plans Set is comprised of the EdScratch lesson activities and

this guide. The collection is licensed under a Creative Commons Attribution-

ShareAlike 4.0 International License.

Developed and written by: Kat Kennewell

Illustrations by: Jin Peng

EdScratch is developed by Microbric Pty Ltd using open source software created and maintained by the

Scratch Foundation. The Scratch Foundation does not sponsor, endorse, or authorize this content. See

scratch.mit.edu for more information.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/robot-programming-software/edscratch/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

 www.edscratchapp.com 4

How to use this guide
This guide is organised around the activities, lessons and units that make up the

EdScratch lesson set.

The EdScratch lesson activities are divided into six units, each of which has one or

two lessons. Each lesson contains a number of activities which are all related to that

unit’s theme and tied to the learning objectives of that unit.

Understanding the activity types

The EdScratch lessons are comprised of activities designed to gradually introduce

and reinforce computational thinking, computer science and problem-solving skills.

All lessons include base activities which introduce key ideas and contain tasks

requiring students to apply what they have learned. Supplemental extension

activities, designed to further explore and expand on the core learnings of each

lesson, are also included.

There are three types of lesson activities: ‘Let’s explore’ activities, ‘Change it up’

activities, and ‘Challenge up’ activities.

Let’s explore activities – core learning

All lessons include ‘Let’s explore’ activities. These activities are the base

activities which introduce new concepts and explain key ideas. ‘Let’s explore’

activities include explanations and guidance around the core learnings, then

have tasks for students to complete. The tasks allow students to explore the

concepts and skills being introduced.

Change it up activities – extension activities

‘Change it up’ activities are extension activities that reinforce skills and

concepts that have already been introduced. While ‘Change it up’ extension

activities do not introduce new material, they do offer new projects or tasks to

try. ‘Change it up’ activities are generally less structured than ‘Let’s explore’

activities but still include sufficient guidance and hints to help students

undertake the tasks or projects.

Challenge up activities – extension activities

Similar to ‘Change it up’ activities, ‘Challenge up’ activities are also extension

activities which expand on and reinforce the material that has been previously

introduced. The tasks and projects outlined in ‘Challenge up’ activities are

generally more open-ended and offer less structured guidance than ‘Let’s

explore’ or ‘Change it up’ activities.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 5

Reading the activity overview
Every EdScratch lesson activity has a dedicated section included in this guide. Per

activity you will find the following information:

• the activity’s ID number and name,

• an estimate of the activity’s size,

• delivery recommendations (if any),

• a list of the supplies and resources needed for the activity,

• an overview of the activity,

• any tips or tricks to help in delivering the activity, and

• an answer key with assessment suggestions (as needed).

A note on activity size estimates

The size estimates (given as ‘small’, ‘medium’, ‘large’, or ‘project’) are indications of

the size of the activity compared to other activities in the EdScratch lesson set. The

time required to complete an activity can vary greatly depending on each students’

age, experience and interest in the activity.

As a general rule:

• ‘small’ activities will require less than one standard teaching block (less than

45 minutes)

• ‘medium’ activities should be able to be completed within one standard

teaching block (45 minutes or less)

• ‘large’ activities may take students more than one full teaching block

(approximately 45 minutes – 90 minutes)

• ‘projects’ are complex activities which will generally need multiple teaching

blocks (minimum of 90 minutes)

It is recommended to work through a few introductory activities with your students to

gauge how long they will need, on average, to complete activities of each size.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 6

Using the answer key
All of the EdScratch activities have tasks or projects to be completed. Many of the

worksheets also require students to note down elements of their experience or to

provide answers to questions in various formats. For every activity which has

students provide answers to a question or questions, you will find an answer key in

that activity’s section.

The answer key lists both the question number and question type, then provides the

answer (or sample answer) along with marking notes, as required.

Example answer key:

Question Type Sample answer Marking notes

1

SE When I turned Edison
on, the red LEDs came
on and started flashing.
Edison also made a
chirping noise one time.

There are two key things to look for
in students’ answers:
- The robot’s red LED lights turn on
and begin to flash.
- The robot makes a noise.

Answer types

The answer type column identifies what style of response the question has asked

students to provide. There are three possible answer types:

• Exact answer (EA): a question which has an exact solution which the student

must provide.

• Result code (RC): a question which asks students to capture the code they

have as a result of their programming, where a variety of code solutions are

possible.

• Student experience (SE): a question which asks students to capture their

experiences or outcomes as a result of their experimentation and

programming, where a variety of responses are possible.

It is valuable to note the answer type when marking students’ work. When marking

result code (RC) or student experience (SE) type answers, it is important to

remember that many answers are possible.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 7

Supplies you will need
All lesson activities require a set of V2.0 Edison robots and internet-connected

programming devices (desktops, laptops, Chromebooks or tablets). Be sure to read

the ‘Before you start’ section of this guide carefully to learn how to set up your

programming devices to work with EdScratch. Ideally, you will want to have an equal

number of Edison robots and programming devices.

The majority of the lesson activities are designed to work in a 1:1 student-to-robot

ratio. However, some of the activities are best suited to pair or group work, with

multiple students sharing one or more Edison robots. Learning about robots can

initially be an overwhelming task for some students, especially if they are new to

computer science, so having a supportive partner can often be helpful.

The majority of the ‘Let’s explore’ base activities can be completed using just basic

supplies along with the student worksheets and activity sheets included in the

EdScratch lesson activities set. Many of the ‘Change it up’ and ‘Challenge up’

extension activities require additional supplies to enable students to get the most out

of physical computing. The following lists detail the basic supplies and key additional

resources you need to get the most out of the EdScratch lesson activities.

Basic supplies:

• Full set of Edison robots and EdComm programming cables

• Full set of programming devices (computers or tablets)

• 4x AAA batteries per robot (please see ‘Get Edison ready’ in this guide for

more information on batteries)

• Print-outs of student worksheets and activity sheets

Note: Most lessons will list ‘basic supplies set’ as an item in the ‘resources needed’

section of the activity overview. A ‘basic supplies set’, in this instance, means a full

set of Edison robots, EdComm programming cables and programming devices as

well as batteries per robot.

Additional resources:

• Dark coloured tape (e.g. black electrical tape)

• Torches (flashlights)

• Opaque objects to use as obstacles and walls for 3D mazes

• TV or DVD remote controls

• EdCreate kits and any other LEGO brick compatible building system parts

• Various ‘maker-space’ craft and build materials [such as coloured

construction paper, large-sized paper (e.g. butcher’s paper), glue, felt,

cardboard, pipe cleaners, recycled materials, and other similar materials]

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 8

Frequently asked questions
The following section includes some of the most common questions about using the

EdScratch lesson activities set. Additional information about using the Edison robots,

including troubleshooting help, is available at the Meet Edison website:

www.meetedison.com

Q: How much do students need to already know about coding and robotics to

use these lessons?

A: No prior knowledge of either coding or robotics is needed to complete the

EdScratch lessons. If you or your students are new to coding and robotics, you may

find working through the lessons in the order they are presented in this guide to be

the best way to build up your knowledge and get the most out of these activities.

Q: Do students need to know Scratch to use these lessons? Do these lessons

tie into Scratch?

A: The lessons assume that students have not used a Scratch programming

environment previously. If students are familiar with Scratch, however, they will likely

find using the EdScratch environment fairly straightforward.

The EdScratch lessons cover core coding and computer science concepts that can

also be taught or reinforced using MIT’s Scratch programming environment.

However, EdScratch and Scratch are separate programming languages – programs

written in one language are not compatible with the other. If you are also using

Scratch with your students, you may want to do activity U1-2.1b Change it up: Does

EdScratch = Scratch? (unit 1, lesson 2) to explore this concept further.

Q: Do students need to do all the activities in a unit to cover the learning

objectives of that unit?

A: The EdScratch lessons are designed to gradually introduce and reinforce key

computational thinking, computer science and problem-solving skills. All lessons

include ‘Let’s explore’ activities. These activities introduce new concepts,

terminology and explain key ideas. These core learnings are then expanded and

reinforced through the ‘Change it up’ and ‘Challenge up’ extension activities in the

lesson. This modular design is intended to allow for more flexible teaching and

learning through a mix of whole-class, small groups, pair work and individual study.

Having students complete all of the ‘Let’s explore’ activities in a unit will ensure that

they are introduced to all of that unit’s key computational thinking and computer

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
http://www.meetedison.com/

 www.edscratchapp.com 9

science learning objectives. You may find that using at least a few of the ‘Change it

up’ or ‘Challenge up’ extension activities in a unit will help students cement their

understanding of important topics and build up skills. Including some of the ‘Change

it up’ and ‘Challenge up’ extension activities will also ensure students get exposure

to real-world problem-solving and robotics project opportunities.

Q: Are the solutions in the answer key the only correct answers?

A: In some cases, there is a single correct answer, but in most cases many solutions

are possible. Programming is creative – don’t be too quick to dismiss your students’

ways of thinking. What might appear to be ‘incorrect’ can be an acceptable solution,

even when a more elegant solution is also possible.

Q: Can I modify the suggested activities and projects?

A: Absolutely! Tools, such as Edison and EdScratch, can be powerful motivators on

their own. However, to get the most out of any ‘cool tool’, it needs to relate directly to

the interests of the students using it. Choosing extension activities and projects that

are the most relevant to your students’ lives and interests will help them to get the

most out of the lessons overall.

Q: Do I need to follow the units in order? Do I need to do the lessons and

activities inside a unit in order?

A: The EdScratch lessons are designed to allow for flexible teaching. You may

choose to rearrange the content to best suit your students’ needs. For example, you

may want to move some units, lessons or activities around to match better with other

areas of study your students are engaged in at the time. If your students have used

Edison robots before (for example, with the EdBlocks programming environment)

you may also choose to skip some activities.

The student worksheet set also includes an index at the end of the collection. If you

are looking for lessons that relate to a specific topic (for example, sequence or

algorithms) or that use a particular feature of Edison (for example, the motors or the

line tracking sensor) you may find this index helpful in selecting activities from across

units.

However, practical skills in computer science need to be built up from some key

foundational concepts, and some elements of the lessons are progressive. As such,

you may find it easiest to work through the lessons and activities sequentially.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/robot-programming-software/edblocks/

 www.edscratchapp.com 10

Q: Should the whole class work on the same activity together? Can students

jump ahead?

A: How you teach the content is really up to you! All of the lessons are designed to

enable independent learning by your students. You may choose to let students

progress through all or some of the material at their own pace. Units make good

stopping points, so you may choose to let students work independently through a

unit, but no further, for example.

Depending on your students’ ages, abilities and familiarity with Edison robots and

Scratch programming environments, you may find that some students complete

activities more quickly than others. Making ‘Change it up’ and ‘Challenge up’

extension activities available for students to work through at their own pace can help

keep the entire class engaged but on the same topic.

As programming is, at its heart, about participation, collaboration, creativity and

sharing, having students who finish an activity more quickly work together with

others who require additional time is another great way to keep the whole class

engaged and progressing together.

Q: What reading level do students need to read at to use the student

worksheets independently?

A: The original set of student worksheets, written in Australian English, are designed

for independent use by students in Year 5 (10-11 years old) and above. Overall, the

complete worksheet set has an average reading level of 6.6 on the Flesch-Kincaid

Grade Level scale with later units averaging slightly higher reading requirements

than earlier units.

Please note: Translated and modified versions of these lessons may have different

reading level requirements.

Q: I have Version 1 Edison robots. Can I use EdScratch and these lessons?

A: As a general rule, you can use Version 1 Edison robots which have the latest

firmware update (available at https://meetedison.com/edison-robot-support/firmware-

update/) with EdScratch and the activities in this EdScratch lesson set. However,

there are a few limitations, especially when it comes to Edison’s motor outputs.

When using EdScratch blocks from the ‘Drive’ category in EdScratch with Version 1

robots, only use ‘seconds’ as the distance units input parameter. Using ‘cm’, ‘inch’,

or ‘degrees’ as the distance units input parameter will not work with Version 1 robots

and can result in some bizarre behaviour from the robot. In all activies and projects

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/edison-robot-support/firmware-update/
https://meetedison.com/edison-robot-support/firmware-update/

 www.edscratchapp.com 11

where students use ‘Drive’ category blocks, be sure to remind students to always

and only use ‘seconds’ as the distance units input parameter.

It is also recommended that you avoid using the sensing and event EEdScratch

blocks related to ‘drive strain’ with Version 1 robots as these blocks can cause the

robots to behave erratically. (Note: none of the activities in these lessons use the

‘drive strain’ sensing or event blocks.)

What’s the reason behind these limitations? The key cause has to do with some

physical differences between Version 1 Edison robots and V2.0 Edison robots.

Edison V2.0 robots have wheel encoders which allow the robots to travel specific

distances at exact speeds. These encoders enable the robots to use distance units

other than time, including centimetres, inches and degrees. Version 1 Edison robots

do not have encoders and therefore are not capable of the precision driving required

to use these other inputs.

Love these lessons? Hate them? Have an idea for a lesson activity?

The team behind EdScratch and Edison would love to hear from you! You can

share your feedback and ideas with us through the contact form on our website at

www.meetedison.com/edison-robot-support/contact-us/

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
http://www.meetedison.com/edison-robot-support/contact-us/

 www.edscratchapp.com 12

Before you start
Before using Edison with your students, you will need to set up the programming
devices, (i.e. the computers, laptops, Chromebooks or tablets) you will be using with
the EdScratch app and get the Edison robots ready.

This guide shows the basics and troubleshooting help for getting set up to use
Edison with EdScratch. Additional details, including information about Edison’s other
programming languages, can be found in the free Getting started with Edison guide
available at https://meetedison.com/content/Get-started-with-Edison-guide-
English.pdf

Get Edison ready
To get Edison ready for use, you need to:

1. Open the battery compartment at the back of Edison and remove the EdComm

programming cable.

2. Insert 4 ‘AAA’ batteries. Please refer to

the picture to ensure that the batteries

are inserted correctly. Be sure to

reclose the battery case by clipping the

battery cover back on.

Please note: Low or flat batteries can cause

a range of issues with Edison. For this

reason, always use fresh, fully charged

batteries in your robots.

Choosing batteries: If using disposable batteries with Edison, only ever use alkaline

batteries. (These are the most common standard AAA batteries you will find in just

about any shop.) If you are using rechargeable batteries with Edison, only use nickel

metal hydride (NiMH) rechargeable batteries. Never use lithium rechargeable,

heavy-duty disposable, super heavy-duty disposable or carbon zinc batteries.

3. To turn Edison on, flip the robot over. Slide the power switch to the ‘on’ position,

as shown in the picture. This will turn

Edison on, and the red LED lights will

start flashing.

Please note: While Edison will turn off

automatically if not used after five

minutes, we recommend you turn the

robots off manually when not in use.

Ensure the batteries are in the right way.

Push the switch towards the ‘on’ symbol.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/Get-started-with-Edison-guide-English.pdf
https://meetedison.com/content/Get-started-with-Edison-guide-English.pdf

 www.edscratchapp.com 13

Set up your programming devices for EdScratch
The best way to set up your programming devices is to run a test program in
EdScratch. Follow these six steps to test EdScratch on your device:

1. Load the EdScratch app by opening www.edscratchapp.com in a browser (we
strongly recommend Google Chrome1). Launch the programming app by
pushing the orange ‘Launch EdScratch’ button. Make sure you allow pop-ups
for www.edscratchapp.com.

2. Once the app opens, you will see the programming environment. Open ‘Menu’

from the menu bar and select ‘Load Demos’. A list of demo programs will
open in a pop-up window. Select the program called ‘Test_program’ which will
load in the programming environment.

3. Adjust your device’s volume to maximum or 100%. Plug the EdComm

programming cable into the audio jack of your device.

NOTE: many devices have built-in safety settings that reduce the volume
when an audio device is connected to the headphone jack. Always double-
check the volume settings after plugging in the EdComm cable to your device.

4. Turn your Edison robot on. Connect the EdComm cable to the bottom of the

robot, near the power switch. Press the round (record) button one time.

5. In the EdScratch app, press the ‘Program Edison’ button. Follow the
instructions on the pop-up and then press the ‘Program Edison’ button on the
pop-up to download the program into Edison.

NOTE: if the ‘There seems to be a network issue accessing the compiler’
warning message pops up at this point, see ‘Troubleshooting 1: Check the
connectivity status’ section below.

6. While the program is downloading, you will hear a whirring sound, a bit like a
dial-up modem. When the download is done, you will hear one of two sounds:
the ‘success’ sound (the same chirping beep Edison makes when you first
turn the robot on) or the ‘fail’ sound (a descending beeping sound)2.

1 EdScratch is compatible with Chrome, Safari, Microsoft Edge and Firefox. To ensure optimal
performance, however, it is strongly recommended that you use EdScratch with Chrome.
2 You can hear recordings of both the success and fail sounds at https://meetedison.com/edison-
robot-support/trouble-shooting/#success-fail-sounds

SUCCESS: If the robot makes the ‘success’ sound, unplug it from the EdComm
cable, then press the triangle (play) button on Edison one time to run the
program. If the program runs successfully in the Edison robot, your programming
device is ready to use! There’s nothing further you need to do to set-up your
device.

FAIL: If the robot fails to download the program, or the program does not play in
the robot, work through the ‘Troubleshooting’ section that follows.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
http://www.edscratchapp.com/
http://www.edscratchapp.com/
https://meetedison.com/edison-robot-support/trouble-shooting/#success-fail-sounds
https://meetedison.com/edison-robot-support/trouble-shooting/#success-fail-sounds

 www.edscratchapp.com 14

Troubleshooting
Depending on the type of programming devices you are using and your network,
there are a few things you will need to do to troubleshoot your devices and get them
working with the EdScratch app.

Troubleshooting 1: Check the connectivity status

If you see the ‘There seems to be a network issue accessing the compiler’ warning
message after pressing the ‘Program Edison’ button in the EdScratch app or if the
program failed to download successfully, you will need to check the app’s
connectivity status.

To work, the EdScratch app needs
to access the compiler (which is
what coverts the EdScratch
programs into a format that can be
sent to the Edison robot). Inside the
EdScratch app at
www.edscratchapp.com, open
‘Menu’ in the upper left-hand corner
and select ‘Help’. This will open a
pop-up which includes the option to
‘Run the connection checker’. Click
this button to check your
connection.

If the connection test result shows
‘NO SERVER FOUND’ then you
may be behind a firewall, common at schools, which is blocking access to the
compiler. You will need the network administrator to unblock ports 80, 8080, 443 and
8443 and white list these addresses:

• https://www.edscratchapp.com

• https://api.edisonrobotics.net

• 52.8.213.196

• 13.210.175.93

• 52.79.71.19

SUCCESS: Once the connection checker shows you are connected, try
downloading and running a test program again. If the program downloads and runs
successfully in the Edison robot, your programming device is ready to use! There’s
nothing further you need to do to set-up your device.

FAIL: If the connection checker shows you are connected, but you are still not able
to program Edison, move on to ‘Troubleshooting 2: Switch the compiler output
type’.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
http://www.edscratchapp.com/

 www.edscratchapp.com 15

Troubleshooting 2: Switch the compiler output type

To be sent to the Edison robot, your program must be compiled by the EdScratch
compiler. The EdScratch compiler can create two types of outputs and automatically
chooses which type to create for you based on the type of device it detects you are
using (such as an Apple tablet or a Windows laptop).

If your programs are not
downloading successfully, you can
manually switch the compiler output
type. Inside the EdScratch app at
www.edscratchapp.com, open
‘Menu’ in the upper left-hand corner
and select ‘Help’. This will open a
pop-up which includes the option to
‘Change the compiler output type’.
Click this button to check what
device and settings are being
detected.

If the device being detected is not
accurate, or if your programs are
not downloading successfully, you
can manually switch the compiler
output type. Use the following information to select the output best suited to your
device:

Long pulse compiler output
This output type works well on devices with low output volume, including
some tablets. If you are using a Mac computer, an iPad tablet or a Windows
or Android tablet, the long pulse compiler output should work best for your
device.

Short pulse compiler output
This output type works well on devices with sound enhancement software,
including most Windows desktop and laptop computers. If you are using a
Windows desktop or laptop computer, the short pulse compiler output should
work best for your device.

SUCCESS: Once you have changed the compiler output, try downloading and
running a test program again. If the program downloads and runs successfully in
the Edison robot, your programming device is ready to use! There’s nothing further
you need to do to set-up your device.

FAIL: If you are still not able to program Edison after changing the compiler output
type, check the device-specific troubleshooting advice that follows.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
http://www.edscratchapp.com/

 www.edscratchapp.com 16

Windows computers – troubleshooting

If you are running a laptop or desktop with a Windows operating system and are still

unable to program Edison after running the set-up steps above, try these additional

troubleshooting steps.

Disable sound enhancements
If you are using desktops or laptops running Windows operating systems and both
the short pulse (recommended) and long pulse compiler output types are failing, you
will need to disable sound enhancements.

Please go to https://meetedison.com/edison-robot-support/trouble-
shooting/#soundenhancements to find step-by-step video guides showing you how
to disable sound enhancements for standard Window’s sound enhancements
software as well as the most common third-party software programs.

Once you have sound enhancements disabled, use the long pulse compiler output
option.

Check for a volume ‘hard lock’
Some devices, especially in Europe, have a hard lock on volume whenever an audio
device is detected. This means that the device is ‘locked’ to only deliver a maximum
volume of approximately 75% of the device max volume when an audio device is
detected. To correct this, go into the device’s settings and disable the hard lock to
enable the device to emit true full volume, even with an audio device plugged in.

Chromebooks – troubleshooting

If you are running a Chromebook and still unable to program Edison after running the

set-up steps above, try this additional troubleshooting step.

Disable sound enhancements
Some Chromebooks, including some Dell Chromebooks, have low audio output but
also have sound enhancements. If you are using a Chromebook and both the short
pulse (recommended) and long pulse compiler output types are failing, you will need
to disable sound enhancements.

Sound enhancements are common on Windows machines and we have step-by-step
video guides at https://meetedison.com/edison-robot-support/trouble-
shooting/#soundenhancements showing you how to disable sound enhancements
for standard Window’s sound enhancements as well as the most common third-party
software programs. Depending on the manufacturer, your Chromebook may have
similar sound enhancement software.

Once you have sound enhancements disabled, use the long pulse compiler output
option.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/edison-robot-support/trouble-shooting/#soundenhancements
https://meetedison.com/edison-robot-support/trouble-shooting/#soundenhancements
https://meetedison.com/edison-robot-support/trouble-shooting/#soundenhancements
https://meetedison.com/edison-robot-support/trouble-shooting/#soundenhancements

 www.edscratchapp.com 17

Mac computers – troubleshooting

If you are running a Mac laptop or desktop and are still unable to program Edison

after running the set-up steps above, try this additional troubleshooting step.

Check the volume settings
Some Macs experience audio clipping errors when attempting to program Edison. If

you experience these issues, please try dropping your volume from 100% to

between 50% and 90% instead.

Tablets – troubleshooting

If you are running an Apple, Android or Windows tablet and are still unable to

program Edison after running the set-up steps above, try this additional

troubleshooting step.

Check the volume settings
Many devices have built-in safety settings that reduce the volume when an audio

device is connected using the headphone jack. Please check that your volume is

turned all the way up to 100% after plugging in the EdComm programming cable to

your device.

Some devices, especially in Europe, have a hard lock on volume whenever an audio

device is detected. This means that the device is ‘locked’ to only deliver a maximum

volume of approximately 75% of the device max volume when an audio device is

detected. To correct this, go into the device’s settings and disable the hard lock, to

enable the device to emit true full volume, even with an audio device plugged in.

Please note: most mobile phones do not have the audio output to program Edison

using EdScratch. We do not recommend using mobile phones as programming

devices with Edison.

Still not working?
You can find additional troubleshooting guidance on our website at
https://meetedison.com/edison-robot-support/trouble-shooting/ or you can
contact us for support at https://meetedison.com/edison-robot-support/contact-us/

Our team of friendly Technical Support Officers will do their best to help you out!

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/edison-robot-support/trouble-shooting/
https://meetedison.com/edison-robot-support/contact-us/

 www.edscratchapp.com 18

Unit overview
A summary of each unit, including that unit’s learning objectives, follows.

Unit 1: Get started

Prepare for your EdVenture! This initial unit, which includes two lessons with a total

of four base activities and ten extension activities, introduces students first to the

Edison robot and then to the EdScratch programming environment. Students gain

familiarity with the Edison robot through a series of activities including programming

the robots using barcodes. They then learn the basics of the EdScratch

programming environment in preparation for the next unit.

The learning objectives for this unit are that students will:

• develop a working familiarity with the Edison robot, including its key physical

features (power switch, sensors and buttons),

• be able to program an Edison robot using barcodes, and

• know how to access EdScratch and how to download a program from

EdScratch to Edison.

Unit 2: Move it!

Focus in on the key computational concept of sequence in this unit which includes

two lessons with a total of eight base activities and 13 extension activities. Students

explore Edison’s abilities to move using its motors, plus use the robot’s LEDs and

sound-producing buzzer through a range of activities. Computer programming

fundamentals including inputs, outputs, bugs and debugging are introduced.

Students begin to develop their familiarity with programming Edison in EdScratch

and with using Edison as the base for creative robotic builds.

The learning objectives for this unit are that students will:

• be introduced to the idea of computational thinking and begin to use

computational frameworks when approaching tasks,

• become familiar with the concept of sequence,

• learn what inputs, outputs and input parameters are,

• explore EdScratch’s core output blocks with Edison, including the ‘Drive’,

‘LEDs’ and ‘Sound’ categories in EdScratch,

• be able to create and modify sequential programs for Edison in EdScratch

using basic output blocks and those blocks’ input paraments, and

• begin to explore robotics applications to real-world situations through projects.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 19

Unit 3: Got loops?

Examine the key computational concept of loops and explore different ways loops

can be used to control how the Edison robots behave in this unit consisting of two

lessons with a total of six base activities and 14 extension activities. The topic of

programming logic is examined more closely, including how control structures can

affect the flow of code. Students continue to discover the EdScratch environment,

learning more about the various block types in EdScratch and ways in which these

blocks can be used to create with Edison.

The learning objectives for this unit are that students will:

• be introduced to the computational thinking concept of repetition through the

computer programming structure of loops,

• develop a working understanding of the difference between definite and

indefinite loops,

• combine the concepts of sequence and loops into working programs in

EdScratch,

• be introduced to the programming concept of interrupts,

• experiment with new blocks in the ‘Control’, ‘Comments’ and ‘Events’

categories in EdScratch, and

• expand on their problem-solving abilities by creating and programming

robotics projects.

Unit 4: What if…

Explore selection and branching in computer programming through the key

computational concepts of conditionals and events in this unit’s two lessons with a

total of nine base activities and 15 extension activities. Key computer programming

skills, such as developing pseudocode, are introduced to help students further their

problem-solving abilities as they unlock the Edison robots’ various sensor

capabilities. Students learn about algorithms and use this understanding to create

programs enabling more autonomous behaviour from the robots. Conditionals,

sensing, interrupts and event-based programming are brought to life through the

physical computing activities in this unit.

The learning objectives for this unit are that students will:

• be introduced to the computational thinking concept of conditional selection

(i.e. branching),

• explore how inputs work with Edison using new blocks in the ‘Control’,

‘Sensing’ and ‘Events’ categories in EdScratch,

• experiment using Edison’s sensors and input capabilities in working

programs,

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 20

• combine the concepts of sequence, loops and selection into working

programs in EdScratch,

• develop a practical understanding of how to use pseudocode and comments

to plan, track and debug programs,

• be introduced to the idea of algorithms in computer programming and learn

how algorithms differ from programs, and

• expand their understanding of robotic applications through projects using

sensing and inputs.

Unit 5: Versatile variables

Dive into the key computational concepts of variables, data and expressions while

applying prior learnings from previous units. This unit’s one lesson, which includes a

total of four base activities and eight extension activities, rounds out students’

exploration of the EdScratch environment. Earlier concepts are revisited and

expanded on using the additional flexibility afforded by including variables and

operators to manage data within their programs.

The learning objectives for this unit are that students will:

• be introduced to the computer science fundamentals of variables and data,

• explore how data and variables can be used with Edison using new blocks in

the ‘Data’ and ‘Operators’ categories in EdScratch,

• further explore Edison’s sensors and input capabilities using variables and

operators to refine and modify behaviours in working programs, and

• apply computer science fundamentals such as tracing and debugging to work

through projects using sensing and variables.

Unit 6: Inventor’s time!

Put all of your Edison and EdScratch knowledge into action! This unit includes one

lesson with a total of two base activities and five extension activities with a major

focus on projects. By designing and developing projects of their own using iterative

cycles of planning, making and testing, students put the key computational thinking,

problem-solving, programming, and physical computing concepts they have learned

to work in this culmination unit.

The learning objectives for this unit are that students will:

• learn about the design-build-test cycle and strategies, such as decomposition

and iterative testing, for physical computing problem-solving, and

• demonstrate their understanding of key computational thinking and computer

science principals through open-ended projects.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 21

Unit 1: Get started
Prepare for your EdVenture! This initial unit introduces students first to the Edison

robot and then to the EdScratch programming environment. Students gain familiarity

with the Edison robot through a series of activities including programming the robots

using barcodes. They then learn the basics of the EdScratch programming

environment in preparation for the next unit.

Learning objectives

Students will:

• develop a working familiarity with the Edison robot, including its key physical

features (power switch, sensors and buttons)

• be able to program an Edison robot using barcodes

• know how to access EdScratch and how to download a program from

EdScratch to Edison

Key ideas: hardware versus software, Edison’s buttons and sensors, EdScratch

terminology and basic features

Lessons and activities in this unit

This unit includes two lessons with a total of four base activities and ten extension

activities.

Lesson 1: Meet Edison

- U1-1.1 Let’s explore our Edison robots

o U1-1.1a Change it up: Bricks, blocks and Edison

- U1-1.2 Let’s explore barcode programming

o U1-1.2a Change it up: Sumo wrestling

o U1-1.2b Change it up: Make your own barcode?

o U1-1.2c Change it up: TV remote control barcodes

o U1-1.2d Challenge up: Edison soccer

o U1-1.2e Challenge up: Build and control the EdTank

o U1-1.2f Challenge up: Build and control the EdDigger

o U1-1.2g Challenge up: Build and control the EdRoboClaw

Lesson 2: Meet EdScratch

- U1-2.1 Let’s explore the EdScratch environment

o U1-2.1a Challenge up: Download another!

o U1-2.1b Change it up: Does EdScratch = Scratch?

- U1-2.2 Let’s explore warning messages

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 22

Lesson 1: Meet Edison
This initial lesson serves as an introduction to the Edison robots. Developing an

understanding of Edison’s parts and capabilities will help students use Edison

effectively in all the activities in every unit.

In this lesson, students will ‘meet’ the Edison robot and learn about the robot’s key

features, including the power switch, button locations and functions, sensor locations

and functions, and the robot’s removable parts. Students will also learn about

programming the robots using barcodes.

This lesson has a total of two base activities and eight extension activities:

- U1-1.1 Let’s explore our Edison robots

o U1-1.1a Change it up: Bricks, blocks and Edison

- U1-1.2 Let’s explore barcode programming

o U1-1.2a Change it up: Sumo wrestling

o U1-1.2b Change it up: Make your own barcode?

o U1-1.2c Change it up: TV remote control barcodes

o U1-1.2d Challenge up: Edison soccer

o U1-1.2e Challenge up: Build and control the EdTank

o U1-1.2f Challenge up: Build and control the EdDigger

o U1-1.2g Challenge up: Build and control the EdRoboClaw

Activity U1-1.1 Let’s explore our Edison robots

Activity size Small

Delivery
recommendations

Strongly recommended if your students are new to
Edison robots

Resources needed Edison robots with batteries, EdComm cables, worksheet
U1-1.1

Overview

This lesson introduces students to the Edison robot, including the location of the

robot’s buttons and sensors. Students familiarise themselves with their robot and its

parts. Establishing a working understanding of the robot in this way will help set

students up for success in future lessons.

Tips and tricks

• It may be helpful to have students keep this activity sheet for their review of

Edison’s components in future lessons.

• Even though students don’t need to use the EdComm cables with

programming devices such as computers or tablets in this lesson, you may

wish to show them how to connect the cables to the headphone jacks of the

programming devices they will be using in future lessons at this time.

• Some of the robotics projects in later lessons will require students to remove

the wheels and skid from Edison. Understanding that this is possible can help

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 23

open up students’ imaginations to what the robot might be able to become. It

is recommended that students practice at least removing the wheels. If you

want students to practice removing the skid as well, consider having them do

so over something, like a plastic tray, so that if they drop the skid, it is easier

to locate.

• If your students are interested in learning more about what is on Edison’s

motherboard, you can download the full-size motherboard layout guide at

https://meetedison.com/content/Edison-Motherboard-layout-V2.pdf

Answer key

Question Type Sample answer Marking notes

1

SE When I turned Edison
on, the red LEDs came
on and started flashing.
Edison also made a
chirping noise one time.

There are two key things to look for
in students’ answers:
- the robot’s red LED lights turn on
and begin to flash, and
- the robot makes a noise.

Activity U1-1.1a Change it up: Bricks, blocks and Edison

Activity size Small

Delivery
recommendations

If students have never used LEGO bricks with Edison
before, this is a fun activity to help get them excited

Resources needed Edison robots, EdCreate kits or any other LEGO brick
compatible building system, worksheet U1-1.1a

Overview

Edison is so much more than just a ‘car’ style programmable robot. Using Edison as

the building block base in robotics projects is one of the best ways to see the power

of programming and robotics come to life. This fun STEAM (science, technology,

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/Edison-Motherboard-layout-V2.pdf

 www.edscratchapp.com 24

engineering, arts, and maths) activity is designed to be a low-risk task that gives

students a chance to experiment with ‘engineering’ using Edison. The free-form

building task encourages kids to experiment, tap into their creativity, and begin to

explore some of the tactile engineering components of physical computing.

Tips and tricks

• Edison works with any LEGO brick compatible building system, including the

EdCreate robot creator’s kit. Bricks can be attached to the top and bottom of

the Edison robot and pegs can be attached to the robot’s sides. When

Edison’s wheels are removed, cross axles can be used in the powered

sockets.

• You may want to add mini challenges to this activity such as ‘build as high as

you can’ or ‘make sure Edison’s buttons are still accessible’.

• You may choose to get students to include why they created the design they

did in their answer.

Answer key

Question Type Sample answer Marking notes

1

SE My Edison had a big tower on the top
of the robot.

This is a free-form
activity.

Activity U1-1.2 Let’s explore barcode programming

Activity size Medium

Delivery
recommendations

Strongly recommended if your students are new to
Edison robots

Resources needed - Edison robots with batteries, worksheet U1-1.2, activity
sheet U1-1, torches (flashlights), objects for making
obstacles
- Optional: EdMats, activity sheet U1-2, supplies for
making your own lines/borders

Overview

Students explore some of Edison’s sensors in action using pre-set programs. Seeing

what the robots are capable of without needing to do any coding is a great way to

deliver early success and get students motivated for upcoming activities.

This activity includes five programs stored in Edison’s memory, which are accessed

using special barcodes. Details on each barcode-activated program follow.

Program 1: Clap controlled driving

What’s happening: Edison’s sound sensor is responding to loud sounds, such as

claps. Edison will turn right when it detects one clap or drive forward about 30cm if it

detects two claps.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 25

Tips and tricks

• The robots may struggle to detect and differentiate sounds when there is a

high level of background noise. Having students tap a finger near the sound

sensor on the top of their Edison robot will have the same effect as clapping.

Program 2: Avoid obstacles

What’s happening: The avoid obstacles program uses the Edison robot’s infrared

(IR) light LEDs and IR sensor to detect objects directly in front of the robot. Once the

pre-set program is activated, the Edison robot will drive forward, turning as needed

to avoid obstacles it encounters.

Tips and tricks

• Obstacles need to be opaque but not too dark (e.g. not black) and at least as

tall as Edison for the robot to detect them.

Program 3: Follow a torch

What’s happening: In this program, Edison’s two light sensors at the front-left and

front-right of the robot take light readings of the amount of visible light each one

detects. The readings are then compared to each other. If the level of light detected

by the right sensor is higher than the level of the left sensor, then Edson’s left motor

is driven forward, turning Edison right, towards the light. This movement will continue

until the level of light detected by the left sensor has the greater value. At that time,

the left motor will stop, and the right motor will be driven forward, driving Edison,

once again towards the light.

Tips and tricks

• You will need a torch (flashlight) and a flat surface located away from any

other sources of bright light, such as sunlight or overhead fluorescents to run

this program.

• Once Edison ‘sees’ the bright source of light, the robot will drive towards it. By

moving the torch, you can control where Edison drives.

Program 4: Follow a line

What’s happening: The line tracking program uses the Edison robot’s reflected light

sensor to detect differences between dark and light surfaces beneath the robot.

Once the pre-set program is activated, the Edison robot will drive until it finds a dark

coloured line, then follow that line. In this program, Edison’s line tracking sensor

shines light from its red LED on to the surface beneath the robot. The sensor then

measures the amount of light that is reflected back to the robot. White surfaces

reflect a lot of light, giving a high light level reading while black surfaces reflect very

little, giving a low light level reading. Edison adjusts direction according to these light

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 26

level readings. When Edison is off the line, it turns right to get on the line. However,

when Edison is on the line, it turns left to get off the line. This functionality is why

Edison ‘waddles’ back and forth at the edge of the line.

Tips and tricks

• The difference between the dark and light surfaces needs to be easily

understood by the robot. Either use the thick, dark lines on the activity sheet,

those on an EdMat (free download available at

https://meetedison.com/edmat/) or make a track for Edison to follow by

drawing a dark (e.g. black) line approximately 1.5cm (0.6 inches) wide on a

white background.

• Make sure students start by placing Edison next to the black line, but not on

top of it, so that the line tracking sensor starts on a white surface. Always start

the robot on a white surface when using the line tracking sensor.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Program 5: Bounce in borders

What’s happening: Like the line tracking program, the bounce in borders program

uses the Edison robot’s reflected light sensor to detect differences between dark and

light surfaces beneath the robot. Once the pre-set program is activated, the Edison

robot will drive until it encounters a dark coloured line. It will then turn around and

drive in a different direction without crossing that line.

Tips and tricks

• The difference between the dark and light surfaces needs to be easily

understood by the robot. Either use the thick, dark lines on the activity sheet,

those on an EdMat (free download available at

https://meetedison.com/edmat/) or make a track for Edison to follow by

drawing a dark (e.g. black) line approximately 1.5cm (0.6 inches) wide on a

white background.

• Make sure students start by placing Edison inside the black line so that the

line tracking sensor is on a white surface. The robot can start near the black

line but not on top of it. Always start the robot on a white surface when using

the line tracking sensor.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/edmat/
https://meetedison.com/edmat/

 www.edscratchapp.com 27

Activity U1-1.2a Change it up: Sumo wrestling

Activity size Small

Delivery
recommendations

Complete activity U1-1.2 prior to this activity

Resources needed - At least 2 Edison robots with batteries, worksheet U1-
1.2a, activity sheet U1-2
- Optional: EdMats, supplies for making your own sumo
ring

Overview

This activity uses one of Edison’s special barcodes to activate the sumo wrestling

program. The program is a favourite with students and a good way to begin to create

an atmosphere of collaboration when it comes to using the robots.

The sumo wrestling program combines aspects of two of Edison’s other programs –

bounce in borders and obstacle detection. For this program to work, you need to

place at least two Edison robots on a white-coloured surface with a black-coloured

outline. The obstacle detection part of the program helps each Edison robot find the

other robots while the line detection part of the program helps Edison detect and

react to the dark-coloured border.

Tips and tricks

• You will need at least two Edison robots for this activity. Both robots need to

scan the sumo wrestling barcode to activate the program.

• Make sure the sumo ring is large enough for all the robots to drive around

inside. If the ring is too large, however, it will take longer for the robots to find

each other.

• This program uses Edison’s line tracking sensor. If students are struggling

with a line tracking program, check that the line they are using is a very dark

colour, such as black, and approximately 1.5cm (0.6 inches) wide. Also, make

sure that the background is white or another highly reflective colour. The

EdMat (free download available at https://meetedison.com/edmat/) works very

well for this activity.

• Make sure students start by placing Edison inside the black line so that the

line tracking sensor is on a white surface. The robot can start near the black

line but not on top of it. Always start the robot on a white surface when using

the line tracking sensor.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/edmat/

 www.edscratchapp.com 28

Activity U1-1.2b Change it up: Make your own barcode?

Activity size Small

Delivery
recommendations

- Recommended if students are new to programming
- Complete activity U1-1.2 prior to this activity

Resources needed Worksheet U1-1.2b

Overview

This offline activity reinforces how barcode programming with Edison works.

Students learn the connection between how barcodes function (i.e. by activating

stored programs in the robot’s memory) and why this means they cannot make their

own barcodes. Students then embark on an exercise in imagination – creating their

own pretend program and barcode for Edison.

Tips and tricks

• The worksheet starts with several questions about how barcodes work. You

may want to discuss these as a group or have students think about them on

their own, coming up with their answers before handing out the worksheets.

Doing so is a good exercise in extrapolation.

• Having students create a ‘fake’ program is a good, low-risk task to get them to

start thinking about what programs actually are. This activity gets students to

start exercising computational thinking before being introduced to the concept

explicitly.

Answer key

Question Type Sample answer Marking notes

1

SE My program would have
Edison put away my clean
laundry. If Edison ran my
program, the robot would drive
to the laundry basket and pick
up all the clean clothes. It
would then drive to my closet
and put all the clothes away.

- If students have developed
an understanding of the
robot’s capabilities, they may
design a program which uses
the robot’s actual
functionality. Otherwise, they
may design a program that is
quite fanciful, like in the
example answer. Either is
fine.
- You may want to see if
students’ programs show a
preliminary understanding of
basic computational thinking,
such as sequence, in their
programs.
- As the barcodes are only
pretend, they do not need to
look like real barcodes.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 29

Activity U1-1.2c Change it up: TV remote control barcodes

Activity size Small

Delivery
recommendations

- Strongly recommend if students will be using remote
controls with Edison in later projects
- Complete activity U1-1.2 prior to this activity

Resources needed Edison robots with batteries, worksheet U1-1.2c, activity
sheet U1-3, TV or DVD remote controls)

Overview

This activity introduces using Edison robots with TV or DVD remote controls. This

activity is the first in the lesson set using Edison’s IR messaging and can serve as a

chance to explore that functionality.

Using remote controls with Edison gives students a chance to actively control their

robots without needing to code. This activity can excite students to learn more ways

they can program the robots.

Tips and tricks

• The TV/DVD remote control barcodes affect Edison while the robot is in

standby mode – make sure students do NOT press the play (triangle) button

after using the remote-control barcodes. Instead, press the paired button on

the remote control to activate that action.

• Edison is compatible with around 75% of TV and DVD remote controls. If one

of your remotes doesn’t happen to work with Edison, try a different remote,

preferably a different brand. Alternatively, you can purchase an inexpensive

‘universal remote’ and set it to be a Sony DVD remote control, which works

well with the robots.

• If multiple students are running programs using the remote-control codes in

close physical proximity to each other, they may experience ‘cross-talk’ where

one robot receives and reacts to the remote-control signals sent from a

different group. Try spacing students out. You can also encourage them to

select different buttons on their remotes to pair with the robots to differentiate

each group from one another.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 30

Answer key

Question Type Sample answer Marking notes

1

SE Program Remote control button

Drive forward
Menu navigation wheel ‘up’

Drive backwards
Menu navigation wheel ‘down’

Spin left
Channel down

Spin right
Channel up

Turn left
Menu navigation wheel ‘left’

Turn right
Menu navigation wheel ‘right’

Play beep
Volume down

Play tune
Volume up

You may want to
check that
students have
applied logic to
their button
selection to ensure
they understand
the robot’s
functionality.

Activity U1-1.2d Challenge up: Edison soccer

Activity size Medium

Delivery
recommendations

- Complete activity U1-1.2c prior to this activity

Resources needed - Minimum of 2 Edison robots with batteries, worksheet
U1-1.2d, activity sheet U1-3, minimum of 2 TV/DVD
remote controls, materials for creating the pitch, goals
and ball
- Optional: EdCreate kits/LEGO bricks

Overview

This activity gives students a specific task to complete using the TV remote control

barcodes with their Edison robots.

Students need to work together to be successful. The worksheet specifically instructs

students to compete against each other, then hints that they will first need to

collaborate to avoid cross-talk with the remotes. Although not explicitly stated,

students also need to work together to agree on the creation of both the playing

surface and rules for the soccer game. Encouraging, and pointing out this type of

natural collaboration as it occurs, is a good opportunity to show problem-solving in

action.

Creating the pitch, goals and ball are a good chance for low-risk experimentation in a

‘real world’ scenario.

Tips and tricks

• The TV/DVD remote control barcodes affect Edison while the robot is in

standby mode – make sure students do NOT press the play (triangle) button

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 31

after using the remote-control barcodes. Instead, press the paired button on

the remote control to activate that action.

• Edison is compatible with around 75% of TV and DVD remote controls. If one

of your remotes doesn’t happen to work with Edison, try a different remote,

preferably a different brand. Alternatively, you can purchase an inexpensive

‘universal remote’ and set it to be a Sony DVD remote control, which works

well with the robots.

• With multiple students running programs using the remote-control codes in

close physical proximity to each other, they may experience ‘cross-talk’ where

one robot receives and reacts to a remote-control signal intended for a

different robot. Remind students to choose different buttons on their remotes

to differentiate their commands.

• The size of the pitch and ball will affect student success in this activity.

Encourage students to experiment with setting up a good working solution

before having an ‘official’ match.

• An alternative to this activity is to allow students to build on their Edison

robots using EdCreate or alternative compatible LEGO bricks to make

contraptions to help control the ball. Think of this version of the activity as

modified hockey or polo rather than soccer!

Activity U1-1.2e Challenge up: Build and control the EdTank

Activity size Medium (basic EdTank)
Large (complete EdTank)

Delivery
recommendations

- Complete activity U1-1.2c prior to this activity
- While activities U1-1.2e, U1-1.2f and U1-1.2g are all
different builds, the learning within the three is
comparable. You may choose only to have students
complete one of these three activities.

Resources needed 1 or 2 Edison robots with batteries per EdTank
(depending on build), 1 TV/DVD remote per EdTank,
worksheet U1-1.2e, 1 EdCreate kit per EdTank, EdTank
build instructions set (available at
https://meetedison.com/content/EdCreate/EdBuild-
EdTank-instructions.pdf)

Overview

Using Edison to create programmable robotic builds is one of the most exciting

things students can do with the robots. The EdBuild projects using the pre-set

instructions and EdCreate kits are an excellent way to give kids exposure to

interactive engineering. Using the EdCreate kits and step-by-step instructions for

creating an EdBuild helps ease students into building with Edison without needing to

design the creation themselves.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/EdCreate/EdBuild-EdTank-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdTank-instructions.pdf

 www.edscratchapp.com 32

About the EdTank:

The EdTank is actually two builds in one: the basic EdTank and the complete

EdTank with rubber band cannon.

The basic EdTank uses one Edison robot which can be programmed to drive

forwards, backwards and turn right or left using barcodes and a TV or DVD remote

control. The complete EdTank includes a second Edison robot which controls (fires)

the rubber band cannon.

Tips and tricks

• Students may find it easiest to first lay out all of the EdCreate pieces onto

their work surface and organise the parts into groups of the same piece type

and colour. This can help students identify and use the correct pieces as they

work through the build.

• You will need to reset the cannon and reload a rubber band each time you

fire the cannon. This should be done manually to ensure the new band is

loaded properly and that the firing ‘pin’ is pushed completely back into the

starting location.

• For best results, use the orange bands that come with your EdCreate kit as

the ‘ammo’ in the cannon.

• Just like many real tanks, the EdTank’s design means it will be slow to turn

left or right. When the EdCreate tracks are brand new, they may be extra

grippy, which will make the EdTank turn even slower. You can reduce the

grip by removing the tracks from the EdTank and lightly dusting them with

talcum powder. Be sure to knock any excess powder off the tracks before

putting them back onto the EdTank.

Answer key

Question Type Sample answer Marking notes

1

SE The EdTank didn’t turn as well as the
Edison robot does when it’s in ‘car’
mode. I think this is because the tank
has a wider turning radius and also it
is heavier than the normal Edison.

- Any response that
applies logic to any
difference in driving is
acceptable.
- It is possible that the
EdTank will turn as
quick as the Edison
robot depending on
the driving surface
and condition of the
tracks.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 33

Activity U1-1.2f Challenge up: Build and control the EdDigger

Activity size Large

Delivery
recommendations

- Complete activity U1-1.2c prior to this activity
- While activities U1-1.2e, U1-1.2f and U1-1.2g are all
different builds, the learning within the three is
comparable. You may choose only to have students
complete one of these three activities.

Resources needed 2 Edison robots with batteries per EdDigger, 1 TV/DVD
remote per EdDigger, worksheet U1-1.2f, 1 EdCreate kit
per EdDigger, EdDigger build instructions set (available
at https://meetedison.com/content/EdCreate/EdBuild-
EdDigger-instructions.pdf)

Overview

Using Edison to create programmable robotic builds is one of the most exciting

things students can do with the robots. The EdBuild projects using the pre-set

instructions and EdCreate kits are an excellent way to give kids exposure to

interactive engineering. Using the EdCreate kits and step-by-step instructions for

creating an EdBuild helps ease students into building with Edison without needing to

design the creation themselves.

About the EdDigger:

The EdDigger is a remote-controlled excavator, or digger, with a scoop that you can

drive around (forwards, backwards and spin right or left). The digger scoop of the

EdDigger can lift and lower and can carry small objects, such as other parts from the

EdCreate kit.

Tips and tricks

• Students may find it easiest to first lay out all of the EdCreate pieces onto

their work surface and organise the parts into groups of the same piece type

and colour. This can help students identify and use the correct pieces as they

work through the build.

• The top robot connects to the bottom robot on the third row of studs from the

front of the bottom robot. Thus, the top robot overhangs off the back of the

bottom robot by approximately 2 cm.

Answer key

Question Type Sample answer Marking notes

1

SE To scoop up objects I needed to have
the EdDigger push the objects into
something, like a wall, so that the
objects would be pushed up into the
bucket. Then I could raise the scoop.
To drop objects out of the bucket, I
first lowered the bucket with Edison
stopped, then drove backwards, so
the objects fell out.

Any response that
explains how they
managed the scoop is
acceptable.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/EdCreate/EdBuild-EdDigger-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdDigger-instructions.pdf

 www.edscratchapp.com 34

Activity U1-1.2g Challenge up: Build and control the EdRoboClaw

Activity size Large

Delivery
recommendations

- Complete activity U1-1.2c prior to this activity
- While activities U1-1.2e, U1-1.2f and U1-1.2g are all
different builds, the learning within the three is
comparable. You may choose only to have students
complete one of these three activities.

Resources needed 2 Edison robots with batteries per EdRoboClaw, 1
TV/DVD remote per EdRoboClaw, worksheet U1-1.2g, 1
EdCreate kit per EdRoboClaw, EdRoboClaw build
instructions set (available at
https://meetedison.com/content/EdCreate/EdBuild-
EdRoboClaw-instructions.pdf)

Overview

Using Edison to create programmable robotic builds is one of the most exciting

things students can do with the robots. The EdBuild projects using the pre-set

instructions and EdCreate kits are an excellent way to give kids exposure to

interactive engineering. Using the EdCreate kits and step-by-step instructions for

creating an EdBuild helps ease students into building with Edison without needing to

design the creation themselves.

About the EdRoboClaw:

The EdRoboClaw is a remote-controlled articulated robotic arm, which can be

programmed using the TV/DVD barcodes and controlled with a standard TV or DVD

remote control. You can drive the EdRoboClaw forwards, backwards and spin it right

or left. You can also open and close the claw to pick up and carry an object, such as

one of the EdCreate beams.

Tips and tricks

• Students may find it easiest to first lay out all of the EdCreate pieces onto

their work surface and organise the parts into groups of the same piece type

and colour. This can help students identify and use the correct pieces as they

work through the build.

• The top robot connects to the bottom robot on the second row of studs from

the front of the bottom robot. Thus, the top robot overhangs off the back of

the bottom robot by approximately 1 cm.

• The claw is composed of 3 ‘fingers’ – two parallel fingers which are stationary

(made from grey beams) and the frontmost finger which moves. The row of

gears in the articulated arm controls this forward finger, including its

positioning relative to the stationary fingers. The alignment of the forward

most two gears can affect how the moving finger sits relative to the stationary

fingers when the claw is fully open. When the claw is fully open, and the

EdRoboClaw is sitting on a flat surface (such as a table or desk), the moving

finger should be high enough that one of the EdCreate grey beams can slide

under it between the finger and the table. If the moving finger is not this high,

try gently separating the front of the arm and rotating the frontmost gear by

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/EdCreate/EdBuild-EdRoboClaw-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdRoboClaw-instructions.pdf

 www.edscratchapp.com 35

one or two teeth clockwise independently of the next gear. You will be able to

see this move the front finger. Reconnect the gears and the arm.

• The EdRoboClaw can pick up objects with some flat surfaces. Students may

find that they are not as able to pick up and carry objects which are round,

such as a pen. Try using the 7-hole long grey beam from the EdCreate kit.

Answer key

Question Type Sample answer Marking notes

1

SE I couldn’t carry my pen, but I could
carry my granola bar and some of the
EdCreate parts. I think that the best
objects are flat in some places so
they don’t slip out of the claw.

Any response that
applies logic to the
student’s findings
around objects is
acceptable.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 36

Lesson 2: Meet EdScratch
The second part of the first unit introduces students to the EdScratch programming

environment. Students learn how to access the EdScratch online application, explore

the environment’s main areas (including the ‘bug box’ and warning messages) and

try downloading a test program from EdScratch to Edison.

This lesson has a total of two base activities and two extension activities:

- U1-2.1 Let’s explore the EdScratch environment

o U1-2.1a Challenge up: Download another!

o U1-2.1b Change it up: Does EdScratch = Scratch?

- U1-2.2 Let’s explore warning messages

Activity U1-2.1 Let’s explore the EdScratch environment

Activity size Large

Delivery
recommendations

Strongly recommended if your students are new to
EdScratch

Resources needed Basic supplies set, worksheet U1-2.1

Overview

While drag-and-drop coding in a Scratch-like environment may be familiar to some

students, understanding the EdScratch environment’s particular layout and

functionality is critical for success using the programming language. This activity

introduces the online application and basic layout of EdScratch to students, including

the names of the main areas inside the programming environment. Students then

practice downloading a program from EdScratch to their Edison robot.

Ensuring students can navigate inside EdScratch and understand how to download

EdScratch programs to the robot will support their independent use of the

environment in future lessons.

Tips and tricks

• Some devices, especially tablets, automatically lower the volume when they

detect that an audio device, such as headphones, has been connected to the

audio jack. The programming device may read the EdComm cable as

‘headphones’. Make sure the volume on the computer or tablet is still turned

all the way up after the EdComm cable is plugged in.

• While a program is downloading to Edison, Edison makes a whirring sound,

similar to an old dial-up modem. Once the program downloads successfully,

Edison will make a chirping beep. If the program fails while downloading,

Edison will make a ‘fail sound’. You can hear what the success and fail noises

sound like at https://meetedison.com/edison-robot-support/trouble-shooting

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/edison-robot-support/trouble-shooting

 www.edscratchapp.com 37

• Make sure students do not unplug the EdComm cable until after they hear the

‘success’ sound.

• When many students are downloading programs at the same time, you may

experience slower internet speeds, causing the program to take longer to

create the ‘Program Edison’ button in the pop-up box and for the program to

download to Edison. Remind students to listen for the success sound before

unplugging the EdComm cable to ensure they wait until the program fully

downloads.

Answer key

Question Type Answer/Sample answer Marking notes

1 EA In the menu bar.

2 EA

There are zero messages in the bug
box.

The correct
Test_program does
not have any warning
messages, so nothing
should appear in the
bug box.

3 SE First, the robot beeps once, turns on
the left LED and spins left almost all
the way around. Then the robot
beeps once, turns on the right LED
and turns off the left LED and spins
back to the start position. It repeats
the whole thing five times.

The main objective is
that students
download and run the
correct program
successfully. How
they describe the
program is of
secondary
importance.

Activity U1-2.1a Challenge up: Download another!

Activity size Small

Delivery
recommendations

Complete activity U1-1.2c prior to this activity

Resources needed - Basic supplies set, worksheet U1-2.1a
- Additional supplies will be needed depending on the
programs selected.

Overview

This activity encourages students to explore EdScratch a bit further independently.

By selecting a different demo program than the Test_program (which was used in

the base activity), students practice the key skills required to download programs to

their robots successfully.

The questions on worksheet U1-2.1a encourage students to begin to tie the on-

screen code they see in the demo program of their choice to their robot’s real-world

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 38

actions. Understanding this connection is fundamental to being able to use

computational thinking practices effectively when developing their own programs.

Tips and tricks

• You can limit the supplies required for this activity to just the basic supply set

and the worksheet by having students select the Moving_with_music or

Clap_controlled_driving demo programs.

• If students are struggling with this activity, have them review worksheet U1-

2.1.

Answer key

Question Type Sample answer Marking notes

1

SE Moving_with_music The program name
should be one from
the demos list.

2

SE I thought the robot would move to
whatever music I put on. Instead, the
robot played a song and moved to
that song.

Anything that answers
the question is
acceptable.

3

SE The robot played the notes that the
program has in it. The robot also
moved the same way as what the
blocks said. It did the actions in the
same order that the blocks are in, top
to bottom.

Ideally, the answer
should demonstrate
an understanding that
the blocks on screen
are related to the
robot’s actions.
Depending on the
program students’
select, this connection
may be less obvious.

Activity U1-2.1b Change it up: Does EdScratch = Scratch?

Activity size Small

Delivery
recommendations

Recommended if students have used, or will be using,
both Scratch and EdScratch

Resources needed Internet-linked computers or tablets, worksheet U1-2.1b

Overview

Many students will immediately ‘recognise’ EdScratch – especially if they have used

MIT’s Scratch programming language before. The EdScratch app was developed

using the Scratch Blocks code base developed by MIT (building on the Blockly code

base developed by Google). That’s why there is such a strong similarity between

Scratch and EdScratch. It’s important for students to understand that the two are

separate languages, however. This activity asks students to explore this for

themselves.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 39

Tips and tricks

• This activity may not be as effective for students who have not used Scratch.

You may choose to have it as an optional activity for any student curious

about the relationship between the two languages.

• This activity is well suited to group or whole-class work, with students

contributing to a list of similarities and differences.

• Even if your students are not using Scratch, this activity can still make for an

interesting exploration of the fact that there are many different programming

languages, each with its own capabilities and limitations.

Answer key

Question Type Sample answer Marking notes

1

SE 1 – The colours and the shapes of the
blocks look the same in both
languages.
2 – Both Scratch and EdScratch have
a block pallet, a menu bar and an
area for making programs.
3 – Some of the block categories, like
‘sound’ and ‘control’, are the same in
both Scratch and EdScratch.

Any three things that
are similar or the
same in the two
languages are
acceptable.

1

SE 1 – Scratch uses Sprites, like the cat,
but EdScratch doesn’t have Sprites.
2 – EdScratch has a bug box, but
Scratch doesn’t have one.
3 – The names of the block types are
different in EdScratch and Scratch.

Any three things that
are different or appear
different in the two
languages are
acceptable.

Activity U1-2.2 Let’s explore warning messages

Activity size Small

Delivery
recommendations

- Strongly recommended if your students are new to
EdScratch
- Strongly recommended if your students are new to the
idea of debugging in programming

Resources needed Basic supplies set, worksheet U1-2.2

Overview

The bug box in EdScratch provides warning messages to users. These messages

can flag different problems or potential issues. In this activity, students learn about

the bug box and the two types of warning messages they may encounter in the bug

box. The idea of bugs in programming is not explicitly introduced in this activity,

however, nor is the practice of debugging.

The critical learning objective of this activity is that warning messages in EdScratch

are not ‘failures’ or inherently bad things. Quite the opposite! The bug box and its

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 40

warning messages are wonderful tools to help discover and fix issues – critical

problem solving and coding skills. This lesson activity aims to help students develop

a good attitude towards the bug box, viewing it as a tool they can use, while laying

the framework for debugging as a skill to be developed in future lessons.

Tips and tricks

• Some students may fix the bugs before answering the questions. Reloading

the demo program will bring back the original program and its bugs. Using the

keyboard shortcut ‘undo’ (PC: Ctrl + z) (Mac: command + z) will also undo

changes one by one.

• You can find a complete guide to the warning messages in EdScratch at

https://meetedison.com/robot-programming-software/edscratch/. This guide

includes all warning messages, what they mean and examples of when you

may encounter them.

Answer key

Question Type Answer/Sample answer Marking notes

1

SE An error message popped up and
said that the program cannot
download because there is a red
warning message.

While a red message
is displaying, the
program will not
download. Student
answers must
demonstrate an
understanding of this.

2

SE I took the orange ‘wait 1 sec’ block
out of the purple blocks.

Removing the non-
musical note block
from the stack will fix
the issue. Other fixes
which result in the
same outcome (such
as deleting all blocks)
are technically correct
but are not ideal
solutions.

3

EA

The two blue ‘drive’ blocks (‘forwards
for 10 cm at speed 2’ and ‘backwards
for 17 cm at speed 5’) will not be
programmed into Edison.

This answer is based
off the program
without any changes
applied.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/robot-programming-software/edscratch/

 www.edscratchapp.com 41

Unit 2: Move it!

Focus in on the key computational concept of sequence in this unit. Students explore

Edison’s abilities to move using motors, plus use the robot’s LEDs and sound

sensor/buzzer through a range of activities. Computer programming fundamentals

including inputs, outputs, bugs and debugging are introduced. Students begin to

develop their familiarity with programming Edison in EdScratch and with using

Edison as the base for creative robotic builds.

Learning objectives

Students will:

• be introduced to the idea of computational thinking and begin to use

computational frameworks when approaching tasks

• become familiar with the concept of sequence

• learn what inputs, outputs and input parameters are

• explore EdScratch’s core output blocks with Edison, including drive, LEDs and

sound

• be able to create and modify sequential programs for Edison in EdScratch

using basic output blocks and the input parameters of those blocks

• begin to explore robotics applications to real-world situations through projects

Key ideas: computational thinking, sequence, programming (coding), inputs and

outputs, input parameters, bugs (errors), debugging, syntax

Lessons and activities in this unit

This unit includes two lessons with a total of eight base activities and 13 extension

activities.

Lesson 1: Sequence

- U2-1.1 Let’s explore how computers ‘think’

o U2-1.1a Change it up: Make a PBJ sandwich

o U2-1.1b Change it up: Human robots

- U2-1.2 Let’s explore going step-by-step in EdScratch

- U2-1.3 Let’s explore driving Edison

o U2-1.3a Challenge up: Maze madness

o U2-1.3b Challenge up: Self-walking pet

Lesson 2: Inputs and outputs

- U2-2.1 Let’s explore Edison’s outputs

o U2-2.1a Challenge up: Drive the maze safely

- U2-2.2 Let’s explore input parameters

o U2-2.2a Change it up: Teach Edison to count to 9

o U2-2.2b Challenge up: Teach Edison to count to 9 out loud

- U2-2.3 Let’s explore Edison’s musical talents

o U2-2.3a Change it up: Play a song in a round

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 42

o U2-2.3b Challenge up: You are the conductor

- U2-2.4 Let’s explore bugs and debugging

- U2-2.5 Let’s explore Edison’s motors

o U2-2.5a Challenge up: Spinning garden

o U2-2.5b Challenge up: Spinning solar system

o U2-2.5c Challenge up: Cartographer and navigator

o U2-2.5d Challenge up: Writer and director

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 43

Lesson 1: Sequence
The main focus of this lesson is on the foundational computational concept of

sequence. Students first learn what ‘computational thinking’ is and why it is a helpful

framework for problem-solving and working with computers. Sequence, one of the

most critical building blocks of computational thinking, is then introduced. Students

begin to apply computational frameworks, especially sequential thinking, when

approaching tasks. The activities in this lesson offer students ample opportunities to

practice applying sequential logic, determining the exacting step-by-step instructions

that they need to provide in order to complete objectives. Students also begin to

create their own programs for Edison using the ‘Drive’ category of blocks in

EdScratch.

This lesson has a total of three base activities and four extension activities:

- U2-1.1 Let’s explore how computers ‘think’

o U2-1.1a Change it up: Make a PBJ sandwich

o U2-1.1b Change it up: Human robots

- U2-1.2 Let’s explore going step-by-step in EdScratch

- U2-1.3 Let’s explore driving Edison

o U2-1.3a Challenge up: Maze madness

o U2-1.3b Challenge up: Self-walking pet

Activity U2-1.1 Let’s explore how computers ‘think’

Activity size Medium

Delivery
recommendations

Consider delivering activity U2-1.1a prior to using this
activity

Resources needed Worksheet U2-1.1, activity sheet U2-1

Overview

In this offline activity, students are introduced to the ideas of computational thinking

and sequence. Students do not need to fully understand what computational thinking

entails at this point, but it is valuable to use the term explicitly. Using computational

thinking makes coding much easier, but it is a bit different from how we normally

approach and think about things in our lives. That’s why introducing ‘computational

thinking’ as a way to think about things is a useful notion. Getting kids to ‘put on their

computational thinking hats’ can help them approach problems differently, finding

solutions they may otherwise overlook.

This activity has students practice following and giving good sequential instructions

by being explicit about each action and going step-by-step, one action at a time.

Developing a sequential approach to problem-solving is crucial for good

computational thinking and success when programming in EdScratch.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 44

Tips and tricks

• Extension activities U2-1.1a and U2-1.1b are both designed to introduce

sequence in a fun, engaging way. Both extension activity options are best

done as a group or whole class as these activities generally need an

instructor to run effectively. You may choose to run one or both of the

extension activities before formally introducing the key concepts using this

activity or use these activities to reinforce the concepts after this activity. For

example, you could run activity U2-1.1a as a class, then have students work

on activity U2-1.1 individually, then do U2-1.1b as a small group

reinforcement activity.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA

The car.

2

EA

The car.

3

EA

The ice cream cone.

4

SE Move forwards 3 squares. Turn left.
Move forwards 2 squares.

Any answer which
meets the question’s
criteria is acceptable.

5 SE Move forwards 2 squares. Turn left.
Move forwards 2 squares. Turn right.
Move forwards 1 square.

Any answer which
meets all of the
question’s criteria is
acceptable.

6 SE Turn right. Move backwards 1 square.
Turn right. Move backwards 1 square.
Turn right. Move backwards 1 square.

Any answer which
meets all of the
question’s criteria is
acceptable.

Activity U2-1.1a Change it up: Make a PBJ sandwich

Activity size Medium

Delivery
recommendations

Consider delivering this activity prior to activity U2-1.1

Resources needed Worksheet U2-1.1a, supplies for making the sandwich or
alternative food

NB This activity is best done as a group or whole class as it
will likely need an instructor to run effectively.

Overview

This two-part offline activity is designed to be a fun way to have things go wrong if

and when instructions are not exactly right. Understanding that computers are super

literal and require instructions that are both exacting and sequential is crucial for

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 45

success in coding. Helping build up students’ understanding of this concept will help

them better problem-solve as they create programs of their own.

How to run task 1

The first part of this activity asks students to write out instructions to make a

sandwich. This can be down individually or in pairs. The worksheet gives a few hints

that this task may be more complicated than it first appears, but there’s no need to

belabour the point. Having some less-than-perfect instructions will make the second

part of the activity more fun and help drive home the key message of the activity to

all the students.

How to run task 2

If you are using this activity as a whole class (recommended), this task should be

done with the whole class watching. Select one of the student-written instructions

sets either at random or cherry-pick one you can see has issues. Have a student

volunteer read out each step one at a time. Follow each step EXACTLY as it is

written. For example, if the instruction says ‘put peanut butter on the bread’ but

doesn’t say to open the jar – don’t open the jar. Just put the whole jar onto the bread.

Early exposure to what can go wrong if our instructions aren’t exacting enough for a

computer (or robot) in this for-fun environment helps kids build up an understanding

of the concept removed from the act of coding. This can help kids learn to consider

sequential thinking and carefully analyse what is happening, enabling them to

problem-solve issues they face when coding more effectively.

Tips and tricks

• This activity is best done as a group or whole class as it generally needs an

instructor to run effectively, especially for task 2.

• You can see an example of this type of activity being demonstrated at

https://www.youtube.com/watch?v=RjHzD2sfWcQ

• You may choose to run this activity and/or extension activity U2-1.1b to

kickstart your exploration of sequence before examining the key concept in

detail using activity U2-1.1. For example, you could run activity U2-1.1a as a

class, then have students work on activity U2-1.1 individually, then do U2-1.1b

as a small group reinforcement activity.

• If your students are not familiar with peanut butter and jam sandwiches, or if

you need to avoid peanut butter in case of nut allergies, switch out the food.

Choose something your students will be familiar with that seems simple but

also has multiple steps to make.

o Alternative sandwich ideas: vegemite and cheese, cream cheese and

cucumber, cream cheese and jam

o Other foods: rice balls, soft tacos, yogurt parfaits

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.youtube.com/watch?v=RjHzD2sfWcQ

 www.edscratchapp.com 46

Answer key

Question Type Sample answer Marking notes

1

EA
RC
SE

Take two pieces of bread.
Add peanut butter to one
piece of bread. Put jam
on the other one. Put the
peanut butter and jam
together.

Any instructions – even full of
errors – are fine. Alternatively, you
might have students ‘fix’ their
answers and submit those to
demonstrate an understanding of
the key concepts of exacting and
sequence.

2

SE It was not a sandwich – it
was just jars of peanut
butter and jam stacked
on bread!

Opinion based or descriptive
answers are acceptable.

Activity U2-1.1b Change it up: Human robots

Activity size Medium

Delivery
recommendations

Consider delivering this activity in conjunction with U2-1.1

Resources needed Worksheet U2-1.1b, supplies for marking out the human
robot grid

NB This activity is best done as a group or whole class as it
will likely need an instructor to run effectively.

Overview

This offline activity is designed to help students better understand the ‘robotic’ logic

of sequence. Similar to activity U2-1.1, this activity has students use a grid to give

and receive sequential instructions. In this activity, however, the students follow

those instructions as ‘human robots’.

Understanding that computers are super literal and require instructions that are both

exacting and sequential is crucial for success in coding. Helping build up students’

understanding of this concept will help them better problem-solve when they create

programs of their own.

What to do

Set up a human-sized grid with a goal marker somewhere on the grid. Determine the

start point and have students work out the instructions needed to get the ‘human

robot’ to that goal. Have students work together to write down and then give the

instructions to another student acting as the robot. Remind students that the robot

can only follow the instructions that the robot receives exactly as they receive them.

No fixing allowed!

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 47

Tips and tricks

• This activity is best done in groups or as a whole class as it generally needs

an instructor to set-up and run effectively.

• A great example of how to run this activity can be seen at

https://csunplugged.org/en/topics/kidbots/unit-plan/rescue-mission/

• You may choose to run this activity in conjunction with activity U2-1.1a and

activity U2-1.1. For example, you could run activity U2-1.1a as a class, then

have students work on activity U2-1.1 individually, then do U2-1.1b as a small

group reinforcement activity.

Answer key

Question Type Sample answer Marking notes

1

SE <series of steps leading the robot to
the goal>

Answers will depend
on the grid and task
you set.

2

SE Yes, but we forgot to include some of
the turns, so we had to fix that first.

Activity U2-1.2 Let’s explore going step-by-step in EdScratch

Activity size Small

Delivery
recommendations

Recommend if students are new to EdScratch

Resources needed Basic supplies set, worksheet U2-1.2

Overview

This activity gets students to apply the idea of sequence and sequential

programming to the EdScratch environment. Exploring how changing the sequence

of the blocks on the screen affects the robot’s behaviour helps solidify the

importance of sequence in programming.

The idea that each EdScratch block is one ‘action’ is introduced. Understanding this

idea will help students apply sequence when building programs. Students also

experiment moving blocks around and changing inputs inside blocks to gain

confidence manipulating the EdScratch language.

Tips and tricks

• If students are struggling to get blocks to move from the block pallet, make

sure that they are dragging the blocks straight to the right into the

programming area, not in another direction (such as up or down inside the

blocks pallet itself).

• Blocks must be attached to the start block to be downloaded to Edison.

Floating blocks not attached to a start block will not download to Edison.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://csunplugged.org/en/topics/kidbots/unit-plan/rescue-mission/

 www.edscratchapp.com 48

• You can remove blocks you don’t want by dragging them into the trash bin in

the lower right corner of the programming areas or back into the block pallet.

• While the term ‘input parameter’ is not introduced until the next activity,

beginning to refer to the options inside a block as ‘input parameters’ is a habit

you may want to get into straight away.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA First, the robot will drive forwards for
2.5 seconds at speed 5. Second, it
will beep. Third, it will turn the left
LED on. Fourth, it will spin left for 120
degrees at speed 10. Fifth, it will drive
backwards for 2 seconds at speed 2.

NOTE: Task 2
encourages kids to
find and fix any errors
in what they have
written in either this
answer or their
program.

2

SE First, the robot will drive forwards for
2.5 seconds at speed 5. Second, it
will drive backwards for 2 seconds at
speed 2. Third, it will spin left for 120
degrees at speed 10. Fourth, it will
turn the left LED on. Fifth, it will beep.

Student answers
should only move the
existing blocks around
– not add or change
blocks.

Activity U2-1.3 Let’s explore driving Edison

Activity size Medium

Delivery
recommendations

Consider using activity U2-1.3a and this activity as a
single lesson

Resources needed - Basic supplies set, worksheet U2-1.3, activity sheet U2-
2, activity sheet U2-3
- Optional: supplies for making your own tracks

Overview

Get the robots moving by applying sequential coding to the ‘drive’ category of blocks

in EdScratch. Kids work through two programming tasks to get the robots to

complete driving tasks – first, a straight track and then a mini maze.

The mini-maze task requires students to use computational thinking to create a

sequential program to solve the maze. To complete the maze without ‘cheating’

students inevitably need to iterate different versions of their initial program concept,

experimenting with different blocks and input parameters.

Tips and tricks

• You can also have students make their own straight tracks or mazes to

complete on large paper or by using tape to mark out a track on the floor or

desk.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 49

• First attempts in programming are almost always ‘wrong’ – and that is

perfectly okay! Persevering and changing programs iteratively, testing as they

go, will get students to the right answer. Resilience is key!

• Due to minor mechanical differences in the motors and encoders inside

different Edison robots, some robots may not turn to exactly 90 degrees when

given the input of 90. Encourage students to try different values around 90

(e.g. 87 or 93) to find the input that works best for their Edison.

Answer key

Question Type Sample answer Marking notes

1

RC

forwards for 26.5 cm at speed 5
OR
forwards for 10.5 inches at speed 5
OR
forwards for 1.05 seconds at speed
5

Student answers will
depend on the input
parameters they
select. Sample
answers assume
completion on the
provided activity sheet
using speed 5.

2

SE 1. Go straight. 2. Turn left. 3. Go
straight. 4. Turn left. 5. Go straight. 6.
Turn right. 7. Go straight then stop.

Students may miss
steps in their initial
plan – creating the
program will show
them any issues.

Activity U2-1.3a Challenge up: Maze madness

Activity size Small to medium (depending on the number of tasks
attempted)

Delivery
recommendations

Consider using this activity as a set of extra challenges
for activity U2-1.3

Resources needed - Basic supplies set, worksheet U2-1.3a, activity sheet
U2-3
- Optional: supplies for making your own maze

Overview

Perfect for students who finish activity U2-1.3 quickly or for students needing

additional task-based sequential programming practice, this set of 3 extension ideas

offers variations on the maze-driving task from activity U2-1.3.

Tips and tricks

• If students are making their own mazes to complete, they will be most

successful doing so on large paper or by using tape to mark out a track on the

floor or desk.

• Due to minor mechanical differences in the motors and encoders inside

different Edison robots, some robots may not turn to exactly 90 degrees when

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 50

given the input of 90. Encourage students to try different values around 90

(e.g. 87 or 93) to find the input that works best for their Edison.

• Encourage students to try both the ‘turn’ and ‘spin’ input parameters to see

which works best.

Activity U2-1.3b Challenge up: Self-walking pet

Activity size Large

Delivery
recommendations

This is a good activity to bring maker-space/crafting and
coding together

Resources needed Basic supplies set, worksheet U2-1.3b, maker-
space/crafting supplies

Overview

This fun activity asks students to use their creativity to make Edison into something

else – in this case, a pet which can walk itself.

The coding part of this activity can be quite simple: a program where the robot

moves forward for a while, turns around and comes back is sufficient. The real

challenge lies in building Edison into a pet.

A few hints as to how this can be accomplished are included in the student

worksheet, but the sky is the limit! This is a creative activity for students to

experiment with what will and will not work in terms of design, materials and

construction.

Tips and tricks

• To download and run the program, students will need to access the EdComm

cable attachment area and buttons. You may choose to caution students

about this at the start of the activity or use any designs which do not cater for

this as a chance to explore design planning.

• This activity can be adapted as a home economic sewing project.

• There is no ‘right’ answer, but here is what one sample solution looks like:

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 51

Lesson 2: Inputs and outputs
This lesson begins students’ exploration of the fundamental computer programming

concepts of inputs (including input parameters) and outputs. Students engage with

the robots’ various outputs by creating and modifying sequential programs for Edison

using a range of EdScratch blocks from the ‘Drive’, ‘LEDs’, ‘Sound’, and ‘Control’

categories. The idea of bugs in programming and the practice of debugging are

introduced, preparing students to work with more complicated programming

structures in future activities.

This lesson has a total of five base activities and nine extension activities:

- U2-2.1 Let’s explore Edison’s outputs

o U2-2.1a Challenge up: Drive the maze safely

- U2-2.2 Let’s explore input parameters

o U2-2.2a Change it up: Teach Edison to count to 9

o U2-2.2b Challenge up: Teach Edison to count to 9 out loud

- U2-2.3 Let’s explore Edison’s musical talents

o U2-2.3a Change it up: Play a song in a round

o U2-2.3b Challenge up: You are the conductor

- U2-2.4 Let’s explore bugs and debugging

- U2-2.5 Let’s explore Edison’s motors

o U2-2.5a Challenge up: Spinning garden

o U2-2.5b Challenge up: Spinning solar system

o U2-2.5c Challenge up: Cartographer and navigator

o U2-2.5d Challenge up: Writer and director

Activity U2-2.1 Let’s explore Edison’s outputs

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U2-2.1

Overview

The input-process-output cycle is introduced and then experimented with in this

activity with an emphasis on observing the output results of sequential programming.

Students begin to explore the ‘LED’ and ‘Sound’ categories of blocks in EdScratch

and are introduced to their first control structure – the ‘wait’ block.

Beginning to understand that the input-process-output cycle is at play in every

program helps students start to decompose programming into separate stages. This

is an important skill for debugging in coding and for the computational thinking skill of

decomposing problems into smaller chunks.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 52

Answer key

Question Type Answer/Sample answer Marking notes

1

EA • Turn Edison’s lights off --

LEDs

• Play a musical note -- Sound

• Spin Edison right -- Drive

2

SE The robot did all the steps, but it
was really fast, so it sort of
seemed like it wasn’t doing them
in order but all at once.

Students may note that the
execution of the outputs is
very quick.

3

RC

What works ‘best’ is
subjective, but students
should have a wait block in-
between the LEDs being
turned on and being turned
off at a minimum.

Mini-
challenge

n/a

The worksheet does not
instruct students to share
their answer, but you may
choose to have students
present their thinking or
resulting code.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 53

Activity U2-2.1a Challenge up: Drive the maze safely

Activity size Small

Delivery
recommendations

Complete activities U2-1.3 and U2-2.1 prior to this activity

Resources needed Basic supplies set, worksheet U2-2.1a, activity sheet U2-
3

Overview

Students will need to put their understanding of sequence into careful practice in this

activity. Writing a program that has the robot perform all the steps to complete the

maze plus indicating turning direction using the LED lights, the buzzer or both before

making each direction change is a great way to let students apply their

understanding of sequence in a more creative programming challenge.

Tips and tricks

• Remind students that they can use ‘wait’ blocks to have the robot pause for a

set amount of time.

• While the worksheet doesn’t ask students to capture their program, you may

choose to have students write down or demonstrate their program and explain

their reasoning for using the blocks, inputs, and sequence they chose.

• Due to minor mechanical differences in the motors and encoders inside

different Edison robots, some robots may not turn to exactly 90 degrees when

given the input of 90. Encourage students to try different values around 90

(e.g. 87 or 93) to find the input that works best for their Edison.

• Encourage students to try both the ‘turn’ and ‘spin’ input parameters to see

which works best.

Activity U2-2.2 Let’s explore input parameters

Activity size Small

Delivery
recommendations

Resources needed - Worksheet U2-2.2
- Optional: Basic supplies set

Overview

This offline activity explores the concept of input parameters, building on the basic

definition introduced in activity U2-1.3. This activity helps students understand the

concept of input parameters and establishes a framework for working out what any

given input parameter is contributing to a program. Being able to think critically about

input parameters helps students to understand what is actually happening in a

program.

Input parameters contribute critical information to the inputs of programs. By

explicitly examining input parameters, students gain a deeper understanding of the

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 54

inputs that they are using in their programs. The ability to link the input components

of any given program to the expected outputs of that program is an important skill to

develop for computational thinking and problem-solving.

Tips and tricks

• You may want students to use the programs in the worksheet with their

Edison robots to see the programs in action, helping to cement the connection

between inputs and outputs.

• To further demonstrate the connection between input parameters’ effects on

outputs, have students adjust the input conditions of the worksheet programs

in EdScratch, hypothesise on what those changes to the inputs will do to the

outputs, and then test the programs with their robots to see the results.

Answer key

Question Type Answer Marking notes

1

EA seconds

2

EA 7

3

EA Drive backwards for 6.5 seconds at
speed 7.

4

EA 4 While this program
has multiple blocks,
only one of the blocks
has input parameters.

5

EA What direction do you want the robot
to go?

Any answer that
shows an
understanding that
this input parameter is
related to direction is
acceptable.

Activity U2-2.2a Change it up: Teach Edison to count to 9

Activity size Medium

Delivery
recommendations

Complete activity U2-2.2 prior to this activity

Resources needed Basic supplies set, worksheet U2-2.2a, activity sheets
U2-4, U2-5, U2-6 and U2-7

Overview

This extension activity offers programming challenges which put some of the skills

students have been developing to use. Creating programs for the Edison robot to

‘trace’ (i.e. drive in the pattern) the digital display numbers of their choice requires

the application of sequential thinking and an understanding of the input-process-

output cycle.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 55

This activity calls attention to one particular input parameter (distance in the drive

blocks) and asks students to identify patterns regarding the input parameter’s effects

on output. Students then extrapolate from what they observe, applying their

understanding to a different program challenge.

Tips and tricks

• Each segment in all of the digital display number activity sheets is the same

length. However, when Edison turns, the robot does not turn on the spot but

travels a bit. As a result, the distance parameter required to complete any

segment after a turn will be smaller than the distance parameter needed to

complete a straight segment.

• Due to minor mechanical differences in the motors and encoders inside

different Edison robots, some robots may not turn to exactly 90 degrees when

given the input of 90. Encourage students to try different values around 90

(e.g. 87 or 93) to find the input that works best for their Edison.

• Encourage students to try both the ‘turn’ and ‘spin’ input parameters to see

which works best.

• It is possible to write a program for any of the numbers in the activity sheets

without the robot needing to trace over the same segment twice. You may

choose to mention this to help students envision the sequence they need to

use in their programs.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Answer key

Question Type Sample answer Marking
notes

1

SE 2

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 56

2

RC

3

SE The distance input parameter for the first drive
block is slightly longer than all the others. All of
the other blocks use the same number for the
distance input parameter. I think this means
that any digital display number will only need
one of the two distance input parameters: one
for a straight segment and one for after a turn.

Ideally,
student
answers will
note a
correlation
between the
value needed
in an input
parameter
and the
repeated real-
world
distance the
robot needs
to travel.

4

SE 7

5

RC

You may
choose to see
if students
used the
same
distance input
parameters in
each
program.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 57

6

SE The distance input parameter for the first drive
block, which is straight, is the same in both
programs. Any drive blocks following a turn are
shorter, but the same as each other. The
distance input parameter in the turns is always
the same. The last block of the program for ‘7’
is the same as the first drive block in each
program plus the drive block after a turn
because it is a combination of two segments.

Ideally,
student
answers will
note a
correlation
between the
value needed
in an input
parameter
and the
repeated real-
world
distance the
robot needs
to travel.

Activity U2-2.2b Challenge up: Teach Edison to count to 9 out loud

Activity size Small

Delivery
recommendations

It is recommended to complete activity U2-2.2a prior to
this activity

Resources needed - Basic supplies set, worksheet U2-2.2b, activity sheets
U2-4, U2-5, U2-6 and U2-7
- Optional: supplies for making your own digital display
numbers including appendix 1 (blank digital display
sheet) from this guide

Overview

Bring multiple outputs together into a single sequential program in this semi open-

ended challenge.

There’s no real ‘right’ or ‘wrong’ way to complete this programming challenge. Any

program that meets the criteria of ‘drive the number’ and ‘count the number’ is okay.

This is an important concept for students to begin to understand. Programming is

highly creative, and there are often many solutions possible. That’s part of what

makes computer science so fun and interesting!

Tips and tricks

• Students can use the Sounds outputs, the LEDs outputs, both or a

combination of the two to count. (They can probably also use the Drive

outputs to count if they can figure out a way to do it while still tracing their

display number.) For example, if the student has selected the number 5, their

Edison might drive a segment of the display number, beep, turn, then drive

the next segment, beep, turn, etc. until it has driven all segments and beeped

five times. Alternatively, the program could drive the whole path, then flash

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 58

the robot’s left LED on and off five times. Any program where the robot drives

the path and somehow signals the same value as that path is fine!

• If you want to highlight the idea that many different solutions are possible, split

your students into groups for this activity and give each group the same digital

display number. Have each group demonstrate their solution for the class.

Discuss the differences and similarities in each group’s program and highlight

how, even if they are different, by meeting the criteria, they are still all correct.

• If you have students make their own numbers, you may want to give them a

hint as to what segments they have to work with: a standard display grid is

fully lit up when displaying the number 8. Alternatively, you can provide them

with the blank digital display number worksheet found in appendix 1 in this

guide.

Activity U2-2.3 Let’s explore Edison’s musical talents

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U2-2.3

Overview

Simple musical tunes are a great example of sequence in action. Using Edison to

create music ties together sequence and inputs-outputs into programs that students

love.

This activity is designed to mix the familiar with the unknown. By having students

experiment using new blocks without explicit instructions or detailed explanations,

they apply computational thinking practices and develop problem-solving mindsets.

The final task in this activity includes a semi open-ended programming challenge.

This is a great opportunity for students to experience the creative side of coding.

Tips and tricks

• The song used in task one in the worksheet is Mary Had a Little Lamb. Use

this share-code to access a program with more of the song:

https://www.edscratchapp.com?share=Eb12x3Dm

• The third input parameter in the ‘music note’ block has three choices: (-),

sharp, flat. The default (-) input means to play a normal note, not a sharp or

flat.

• The ‘tempo’ block sets the tempo to be played. Only blocks which come after

a ‘tempo’ block will be affected.

• Edison’s default tempo is ‘medium’. If no ‘set music tempo to’ block is used,

the robot will play notes at the default tempo.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=Eb12x3Dm

 www.edscratchapp.com 59

• Use this share-code to access a program with more of The Hokey-Pokey

song: https://www.edscratchapp.com?share=v0wMx5D5

NB: This version of the song uses loops.

o You may want to wait to use this program until after students have

studied repeating loops.

o Repeat loops cannot be used inside ‘play music in background’ blocks.

To use the longer version of the song in the background, duplicate the

blocks inside the loop and add them into the program in sequential

order instead.

Answer key

Question Type Answer/Sample answer Marking notes

1

SE Very fast

2

SE It made the song play a lot quicker
compared to the original with the
‘medium’ input parameter.

3

SE The ‘set tempo’ block sets the speed
or tempo of the music.

Students should
identify that the block
sets the tempo of the
music.

4

EA If the ‘set tempo’ block is at the end, it
won’t do anything. This is because
Edison looks at the blocks one by one
and does them in the order. If there
are no music blocks after the tempo
block, then the tempo block has no
effect.

Ideally, students will
identify that sequential
programming means
things only go into
effect in order.
Consider having
students try using the
tempo blocks in
different places in the
program to test and
reinforce this concept.

5

EA No, it played the music and then
moved. I think this is because the
blocks are in order with all the music
first and then the drive blocks.

Student answers
should note that the
robot doesn’t move
until after the music
plays and identify
sequence as the
reason.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=v0wMx5D5

 www.edscratchapp.com 60

Activity U2-2.3a Change it up: Play a song in a round

Activity size Medium

Delivery
recommendations

Complete activity U2-2.3 prior to this activity

Resources needed Basic supplies set, worksheet U2-2.3a, sheet music or
access for students to look up songs

NB This activity is best done as a group or whole class.

Overview

Collaborating with other students on a programming project is at the heart of this

activity. Highlighting the ‘sound’ outputs in their robots and using the ‘wait’ block

control structure, students work together to get multiple robots to perform in

harmony.

Tips and tricks

• Consider giving your students some song options or sheet music to use in this

activity. Good options for songs in a round include:

o Row, Row, Row Your Boat

o Three Blind Mice

o Frère Jacques

o Farmer in the Dell

• Getting the timing just right so the robots are perfectly in harmony may be

difficult as all robots will need to start at exactly the same time. Activity U5-

1.4d Change it up: The Edison chorus addresses this problem by switching

out the ‘wait’ blocks for IR messaging blocks. You may choose to wait to use

activity U5-1.4d Change it up: The Edison chorus and this activity together,

highlighting the advantages and disadvantages of each approach.

• If you want to get really musical, get your students to sing along with their

Edison robots so that the students and the robots all play the song in a round

together!

Activity U2-2.3b Challenge up: You are the conductor

Activity size Medium

Delivery
recommendations

Complete activity U2-2.3 prior to this activity

Resources needed Basic supplies set, worksheet U2-2.3b, sheet music or
access for students to look up songs

Overview

This free-form activity asks students to bring their favourite tune to life by

programming it in EdScratch for Edison to play. Music is a great way for kids to

express themselves and their interests, and this activity lets them marry that

enthusiasm with programming, helping showcase the arts in STEAM (science,

technology, engineering, arts and maths).

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 61

Tips and tricks

• Having students search online for their favourite music opens up opportunities

to discuss safe search habits, copyright and attribution, and many other digital

citizenship topics.

• Students with musical talent can choose to write their own original song to

program instead of using an existing song.

Activity U2-2.4 Let’s explore bugs and debugging

Activity size Medium

Delivery
recommendations

Strongly recommended before students begin using
programming control structures (including loops and
conditionals) or sensing in programs.

Resources needed Basic supplies set, worksheet U2-2.4

Overview

Brace yourself – this lesson has a lot more text and a lot more definitions than most,

but don’t let that scare you away! Understanding bugs and debugging is one of the

most critical skills you need your students to develop. Computational thinking is, in

many ways, all about problem-solving. And problem-solving in computer science is

all about debugging.

Students and teachers alike often struggle when moving from purely sequential

programming to coding using more dynamic programming structures such as loops,

branching and conditionals. A key reason people struggle is that they lack the

debugging skill-set needed to find, identify and fix errors successfully.

The fundamentals of debugging are introduced in this lesson, and the practice is

applied to the EdScratch environment. This mainly offline activity will begin to

develop debugging capabilities in your students that are crucial for setting them up

for success in activities in other units.

Tips and tricks

• While technology and computer science have developed the unfortunate

reputation of being ‘for males,’ the history of computer science is full of

fascinating people both male and female. Grace Murray Hopper (mentioned in

this activity), Ada Lovelace, Margaret Hamilton, and Hedy Lamarr are just

some of the fabulous females who have contributed to making modern

computing what it is today. Any of these ladies make brilliant subjects for

research projects and wonderful inspiration for students of any gender.

• You can find a complete guide to the warning messages in EdScratch at

https://meetedison.com/robot-programming-software/edscratch/. This guide

includes all warning messages, what they mean and examples of when you

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/robot-programming-software/edscratch/

 www.edscratchapp.com 62

may encounter them. Warning messages in EdScratch can help you resolve

any syntax errors and also give hints to help fix many common logical errors.

• All syntax errors that can be made in EdScratch will generate a red warning

message in the bug box. Not all red messages are syntax errors, however.

• When a program runs but doesn’t do what you expected, chances are there is

a logical error in the program. Get into the habit of asking students what they

want their program to do, then having them read out the program they have

written in the same flow that the robot will. This will often uncover the logical

error.

Answer key

Question Type Answer Marking notes

1

EA

Syntax error: the tempo block cannot
go inside of the ‘play music in
background’ grouping block. Only
music note blocks can go in that
block.

Logical error: the problem is with the
sequential logic the programmer
used. The programmer needed to
use the tempo block to set the tempo
before the music blocks in order to
have the music play at the very fast
tempo.

Any description that
identifies and explains
the two errors
correctly is
acceptable.

2

EA To get the program to work as
described the following changes
need to be made:
1 – the distance input in the ‘spin
right’ block needs to be 360, not 630.
[logical error]
2 – the speed inputs for the ‘spin left’
and ‘spin right’ blocks need to be the
same value. [logical error]
3 – the ‘set tempo’ block needs to be
outside of the ‘play music in
background’ grouping block [syntax
error]
4 – the ‘set tempo block’ needs to be
before the ‘play music in background’
block [logical error]
5 – the ‘spin left’ and ‘spin right’
blocks need to be after the ‘play
music in background’ block [logical
error]

Student answers
should identify and fix
all five errors. The
inclusion of the error
type is not requested
in the worksheet but
may be helpful in
reviewing the bugs
with students.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 63

Activity U2-2.5 Let’s explore Edison’s motors

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U2-2.5

Overview

This lesson pulls together many of the key concepts from unit 2, including sequential

programming, inputs and outputs, input parameters and debugging. Students further

explore how Edison’s motor outputs are controlled through drive blocks and learn

that the motors can operate, and be controlled, independently. They are given a

creative thinking challenge to imagine a use for this independent motor movement in

a robotics application.

This activity also has students apply their understanding of how inputs (including

information input through input parameters) affect outputs. They use this

understanding to explore why some blocks in the language are dependent on other

blocks. They are then challenged to apply their knowledge to get a program to work

in an activity designed to push them, just a little bit, out of their comfort zone.

Tips and tricks

• The ‘set motors’ blocks only turn the motors on. These blocks require

additional blocks to control the motor’s activity by establishing a condition for

the block. For example, this program says to turn the motors on, set to move

forward, then says to wait in that condition for 1 second.

• The ‘set motors’ blocks can be a bit tricky to use at first, but they are actually

very powerful blocks and are very helpful in many different robotics build

projects using Edison.

• Even if you do not plan on using the ‘set motor’ blocks in other activities in this

unit, this lesson activity is a good opportunity for students to experience, and

overcome, difficulties in programming.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA The left wheel moves backwards.

2

EA The right wheel moves forwards.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 64

3

SE I think that the ‘set left motor’ and the
‘set right motor’ blocks are the blocks
that control only one motor because they
say which motor is being affected.

Students may not
select the correct
blocks, but they
should have a
reason to support
the choice they
make.
Students may have
discovered that the
input parameters for
the ‘stop’ block can
also be set to affect
only one motor at a
time.

4 SE I would turn Edison into a fan, and the
one motor would spin the fan blades.

This is an exercise
in the application of
creative thinking.
Any idea that uses
one of Edison’s
motors is
acceptable.

5 EA Information In the program? Value

Direction yes forwards

Distance yes 3

Distance units yes cm

Speed yes 4

6 EA The robot drove forwards for 3 cm at the
speed of 4.

7 EA Information In the program? Value

Direction yes forwards

Distance no

Distance units no

Speed yes 5

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 65

8 SE The robot didn’t do anything. It couldn’t
because it did not have all the
information it needed.

The robot will not
have the
information to know
how far to move, so
will appear to do
nothing.
Student answers
may note that there
is a message in the
bug box warning
them that they need
additional blocks.

9

SE First, I tried adding a ‘set music tempo’
block to the start of the program, but it
still didn’t move. I moved the ‘tempo’
block to the end of the program but that
still didn’t work. I looked at the other
Drive blocks and saw that seconds was
one of the distance units. That made me
think of the ‘wait’ block, so I added that
to the end of the program and it worked!
I was getting really frustrated when I
couldn’t get the program to work, but
once I did figure it out I was really happy!

The key here is
developing
resilience. Any path
students took and
whether or not they
got the program to
work is secondary.

Activity U2-2.5a Challenge up: Spinning garden

Activity size Project

Delivery
recommendations

- Complete activity U2-2.5 prior to this activity
- This activity and activity U2-2.5b are both applied
robotics projects. Consider using at least one as a
robotics build project for this unit.

Resources needed Basic supplies set, worksheet U2-2.5a, maker-
space/crafting supplies, EdCreate kits/LEGO bricks

Overview

This open-ended project has students apply what they have learned about

sequential programming, inputs and outputs, and debugging into a physical

computing project. This robotics build project asks students to collaborate on the

creation of a spinning garden. Students need to plan their garden, build the different

elements to attach to the robots and program each robot to spin its attachment.

Tips and tricks

• You can see a version of a spinning garden project using Raspberry Pi boards

on YouTube at https://youtu.be/4Fs7y7gZIag?t=424 (Jump to the 7:00-minute

mark to see the final spinning build in action.)

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://youtu.be/4Fs7y7gZIag?t=424

 www.edscratchapp.com 66

• Part of the idea of this project is to turn the robots onto their sides and use the

robot’s motors in a way other than to ‘drive’. However, this project is also

about unleashing students’ creative thinking and problem-solving. If students

decide to use the robots in ways other than with the robots on their sides, but

are still using them to create a spinning garden, that is fine!

Activity U2-2.5b Challenge up: Spinning solar system

Activity size Project

Delivery
recommendations

- Complete activity U2-2.5 prior to this activity
- This activity and activity U2-2.5a are both applied
robotics projects. Consider using at least one as a
robotics build project for this unit.

Resources needed Basic supplies set, worksheet U2-2.5b, maker-
space/crafting supplies, EdCreate kits/LEGO bricks

Overview

This project has students apply what they have learned about sequential

programming, inputs and outputs and debugging into a physical computing project.

This robotics build project asks students to collaborate on the creation of a model

solar system. Students need to plan their approach, build the different elements to

attach to the robots and program each robot to spin its attachment.

Tips and tricks

• If you want your solar system to be a more accurate model, work with

students to create the different scales needed to develop a more

representative model. For example, determine what scale the planets are

sized to and the scale for the distance each planet needs to be spaced from

one another and the sun.

• If you want to allow for more creativity, have students design their own star

system instead of making a model of the solar system. Students can create

and name their own planets, and decide on the composition of each planet

including features like it’s dimensions, colouring, habitability, etc. Have

students write stories about this star system and any inhabitants which reside

inside of it.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 67

Activity U2-2.5c Challenge up: Cartographer and navigator

Activity size Project

Delivery
recommendations

- Recommended as a capstone activity following the
completion of the Let’s Explore activities from unit 2
- Both this activity and activity U2-2.5d are designed to
be used as capstone project options for unit 2. Consider
using at least one as a final project for this unit.

Resources needed Basic supplies set, worksheet U2-2.5c, maker-
space/crafting supplies for making the map

Overview

Get your students to apply sequence to a project where they design the set-up, the

challenges, and the solutions. Students create a map large enough to use with their

Edison robots, then design programming challenges to be solved using that map.

After testing their challenges to make sure a solution is possible, they can then swap

challenges with a classmate.

Designing the programming challenges and testing them for viability gets students to

work with sequence and the other concepts from this unit in a new way. This project

can be used as a ‘showcase’ for students to demonstrate their learnings from the

unit.

Tips and tricks

• This project works well in groups or even as a whole class. Students can

trade programming challenges with each other using the same or different

maps.

• Consider linking this project to any relevant geography or world studies the

students are doing by having students make maps of places they are learning

about in other subjects.

• If students make their map using a grid system, it will be easier to navigate,

but might not be as accurate. This is a good example of trade-offs in design

and makes for a good example to discuss the topic.

• Does your class have a ‘buddy class’ of younger students? Try this variation:

have the older students create a grid-system map and different driving

challenges. (You may find it best to keep it simple and skip using ‘Sound’ and

‘LED’ elements for these challenges.) The ‘cartographers’ can then work with

the younger students in the role of mentors, helping the other students to

solve the challenges. The younger students can either use a push-button

robot, program Edison using the EdBlocks programming language or help the

older students program the robot using EdScratch. Whichever way you do it,

giving your students the chance to help teach the concept of sequence will

cement this key computation thinking concept for them.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/robot-programming-software/edblocks/

 www.edscratchapp.com 68

Activity U2-2.5d Challenge up: Writer and director

Activity size Project

Delivery
recommendations

- Recommended as a capstone activity following the
completion of the Let’s Explore activities from unit 2
- Both this activity and activity U2-2.5c are designed to be
used as capstone project options for unit 2. Consider
using at least one as a final project for this unit.

Resources needed Basic supplies set, worksheet U2-2.5d, maker-
space/crafting supplies for making the story map

Overview

Story maps are helpful tools both for writing stories and for breaking down the stories

we read to show comprehension. Story maps are great examples of sequence in the

real-world and that connection is the basis for this open-ended capstone project.

Students create a story using a story map. They ‘illustrate’ the story using Edison –

by programming the robot to help bring the story to life! Students should use a

combination of Edison’s outputs using the robot’s motors, LEDs and sounds to

highlight key moments in their story, add lighting or sound effects or however else

they like.

Tips and tricks

• A ‘story mountain’ style story map works well as a base design for this project

as it creates a nice linear pathway. You can see an example of this style of

layout here https://www.tes.com/lessons/wImfQ5vQh-8OPA/sequencing

• This project lends itself well to group work.

• This project lends itself well to mixed media by filming presentations – a great

‘showcase’ opportunity.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.tes.com/lessons/wImfQ5vQh-8OPA/sequencing

 www.edscratchapp.com 69

Unit 3: Got loops?

Examine the key computational concept of loops in this unit, exploring different ways

loops can be used to control how the Edison robots behave. The topic of

programming logic is examined more closely, including how control structures can

affect the flow of code. Students continue to discover the EdScratch environment,

learning more about the various block types in EdScratch and ways in which these

blocks can be used to create with Edison.

Learning objectives

Students will:

• be introduced to the computational thinking concept of repetition through the

computer programming structure of loops

• develop a working understanding of the difference between definite and

indefinite loops

• combine the concepts of sequence and loops into working programs in

EdScratch

• be introduced to the programming concept of interrupts

• experiment with new blocks in the ‘Control’, ‘Comments’ and ‘Events’

categories in EdScratch

• expand on their problem-solving abilities by creating and programming

robotics projects

Key ideas: loops (definite and indefinite), repetition, programming control structures,

logic, events, interrupts, comments

Lessons and activities in this unit

This unit includes two lessons with a total of six base activities and 14 extension

activities.

Lesson 1: Loops

- U3-1.1 Let’s explore repeating steps

o U3-1.1a Change it up: Drive a triangle

o U3-1.1b Change it up: Drive a hexagon

o U3-1.1c Challenge up: Choose your shape

o U3-1.1d Challenge up: Drive a circle

o U3-1.1e Change it up: Drive a square?

o U3-1.1f Challenge up: Doodle-bot challenge

- U3-1.2 Let’s explore loops and sequence

- U3-1.3 Let’s explore forever loops

o U3-1.3a Challenge up: Earworm

- U3-1.4 Let’s explore stacking and nesting loops

o U3-1.4a Change it up: Edison the designer

o U3-1.4b Challenge up: Dance party!

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 70

Lesson 2: Interrupts

- U3-2.1 Let’s explore interrupting the main program

o U3-2.1a Change it up: Try a clap instead

o U3-2.1b Challenge up: Cheater bot

o U3-2.1c Challenge up: Pick one

- U3-2.2 Let’s explore comments in coding

o U3-2.2a Challenge up: Create and comment

o U3-2.2b Challenge up: Share your comments

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 71

Lesson 1: Loops
The computational thinking concept of repetition is the primary focus of this lesson.

Students explore repetition in programming and the idea of making code more

efficient by using the computer programming structure of loops. Both definite and

indefinite loops are introduced and explored using some of the loop blocks in the

‘Control’ section of EdScratch. Students increase their understanding of

programming logic by combining sequential programming with loop structures in

various ways to create programs for Edison using EdScratch.

This lesson has a total of four base activities and nine extension activities:

- U3-1.1 Let’s explore repeating steps

o U3-1.1a Change it up: Drive a triangle

o U3-1.1b Change it up: Drive a hexagon

o U3-1.1c Challenge up: Choose your shape

o U3-1.1d Challenge up: Drive a circle

o U3-1.1e Change it up: Drive a square?

o U3-1.1f Challenge up: Doodle-bot challenge

- U3-1.2 Let’s explore loops and sequence

- U3-1.3 Let’s explore forever loops

o U3-1.3a Challenge up: Earworm

- U3-1.4 Let’s explore stacking and nesting loops

o U3-1.4a Change it up: Edison the designer

o U3-1.4b Challenge up: Dance party!

Activity U3-1.1 Let’s explore repeating steps

Activity size Medium

Delivery
recommendations

Consider delivering this activity along with U3-1.1a and/or
U3-1.1b as a single lesson

Resources needed Basic supplies set, worksheet U3-1.1, activity sheet U3-1

Overview

Loops, the first programming control structure of this lesson, are introduced in this

activity. Students first write a program to have Edison drive in a square using only

sequential programming, observing the repeating pattern. Definite loops are then

introduced, and students recreate their ‘drive in a square’ program using this more

efficient coding method.

Tips and tricks

• If students are struggling to understand the loop concept, it can be helpful to

draw out what is happening in this program on paper or the whiteboard. Write

down the ‘drive’ and ‘turn’ commands in sequential order and wrap them in a

loop. Write the numbers 1, 2, 3, and 4 next to the loop. Use arrows to show

that the robot will do the two commands in order, then move back to the top of

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 72

the loop. Cross out the number 1 and then repeat the process until you have

moved through all four repetitions of the loop.

• Loops make programming more efficient, but that doesn’t mean that programs

that don’t use loops are wrong. Programming both the eight-block and three-

block program, observing that both programs work equally well at getting

Edison to drive in a square, is a good way for students to experience the idea

that ‘multiple solutions are possible in coding’ for themselves.

• By first writing the eight-block program, then the three-block program,

students can see how programming structures can make creating programs

easier and more efficient.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

• Due to minor mechanical differences in the motors and encoders inside

different Edison robots, some robots may not turn to exactly 90 degrees when

given the input of 90. Encourage students to try different values around 90

(e.g. 87 or 93) to find the input that works best for their Edison.

• When using programs that run multiple ‘drive’ commands consecutively,

students may note that their Edison robot’s accuracy is reduced as more and

more commands run. Adding a pause (using either a ‘wait’ with a very short

input value or a ‘stop motors’ block as appropriate) between ‘drive’ commands

allows the motors to fully stop moving, which will increase accuracy.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA 8 If students only have
seven blocks, their
robot likely doesn’t
complete the final
turn, which returns it
to the starting position,
as instructed on the
worksheet.

2

SE There is a pattern to the blocks. Only
two block types are being used with
the same input parameters, and they
repeat four times.

Students should note
a pattern of repetition
regarding the blocks
being used and/or the
order of the blocks in
the program.

3 EA 4

4 SE The value needs to be 4 because a
square has four sides and four
corners. So, the code needs to drive
each side and turn each corner a total
of 4 times.

Students will ideally
note a correlation
between the number
of looped actions
required and the
shape’s sides/angles.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 73

Activity U3-1.1a Change it up: Drive a triangle

Activity size Small

Delivery
recommendations

- Complete activity U3-1.1 prior to this activity
- Consider delivering this activity along with U3-1.1
and/or U3-1.1b as a single lesson

Resources needed Basic supplies set, worksheet U3-1.1a, activity sheet U3-
2

Overview

Students practice using the definite loop programming structure to write an efficient

program to get Edison to drive a triangle. This activity is designed to be used in

conjuncture with activity U3-1.1 to help students master the connection between the

number of loops in a definitive loop and the resulting output.

Tips and tricks

• Working out the angle in degrees that the robot needs to turn to trace the

triangle can be tricky. Remind students that the sum of the interior angles of a

triangle is 180° and that the triangle on the activity sheet is an equilateral

triangle.

• This activity lends itself well to a geometry extension lesson.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Answer key

Question Type Answer/Sample answer Marking notes

1

SE 3 The minimum number
of blocks needed for a
successful program is
3: a loop, a drive
forward block and a
turn block.

2

EA 3

3 SE The value needs to be 3 because a
triangle has three sides and three
corners. So, the code needs to drive
each side and turn each corner a total
of 3 times.

Students will ideally
note a correlation
between the number
of looped actions
required and the
shape’s sides/angles.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 74

Activity U3-1.1b Change it up: Drive a hexagon

Activity size Small

Delivery
recommendations

- Complete activity U3-1.1 prior to this activity
- Consider delivering this activity along with U3-1.1
and/or U3-1.1a as a single lesson

Resources needed Basic supplies set, worksheet U3-1.1b, activity sheet U3-
3

Overview

Students practice using the definite loop programming structure to write an efficient

program to get Edison to drive a hexagon. This activity is designed to be used in

conjuncture with activity U3-1.1 to help students master the connection between the

number of loops in a definitive loop and the resulting output.

Tips and tricks

• Working out the angle in degrees that the robot needs to turn to trace the

hexagon can be tricky. Remind students that the sum of the interior angles of

a hexagon is 720° and that the hexagon on the activity sheet is a regular

(meaning that all sides are equal) 6-sided shape.

• This activity lends itself well to a geometry extension lesson.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Answer key

Question Type Answer/Sample answer Marking notes

1

SE 3 The minimum number
of blocks needed for a
successful program is
3: a loop, a drive
forward block and a
turn block.

2

EA 6

3 SE The value needs to be 6 because a
hexagon has six sides and six
corners. So, the code needs to drive
each side and turn each corner a total
of 6 times.

Students will ideally
note a correlation
between the number
of looped actions
required and the
shape’s sides/angles.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 75

Activity U3-1.1c Challenge up: Choose your shape

Activity size Medium

Delivery
recommendations

Complete activity U3-1.1 and either U3-1.1a or U3-1.1b
prior to this activity

Resources needed Basic supplies set, worksheet U3-1.1c, supplies for
making their own shapes

Overview

Students apply their understanding of the relationship between a definite loop and a

regular shape by choosing a shape and then writing an efficient program that gets

Edison to drive that shape. This activity asks students to articulate the patterns they

have noticed about using definite loops with shapes and extrapolate from that to

explore other shapes.

Tips and tricks

• To complete a shape using a 3-block program consisting of a definite loop

which contains a ‘drive’ block and a ‘turn’ block, students must select a

regular shape. However, if students decide not to use a regular shape, they

can still attempt the challenge. You may want to run activity U3-1.2 first if

students want to use non-regular shapes.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA 12

2

SE My shape was an octagon, which has
eight sides and angles. You always
need to have the input parameter be
equal to the number of repeating
sides and angles that the shape has,
so I knew that I would need an 8 as
the repeat block’s input parameter.

Students will ideally
note a correlation
between the number
of looped actions
required and the
shape’s sides/angles.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 76

Activity U3-1.1d Challenge up: Drive a circle

Activity size Small

Delivery
recommendations

Complete activity U3-1.1 and either U3-1.1a or U3-1.1b
prior to this activity

Resources needed Basic supplies set, worksheet U3-1.1d, activity sheet U3-
4

Overview

This activity is a great exercise in creative problem-solving and an exploration of the

limits of the definite loop programming structure.

Students apply their understanding of the relationship between a definite loop and a

regular shape in this challenge by extrapolating, using the pattern they have

observed to create a program where Edison drives in a circle. This activity is

designed to be used once students have realised that the number of loops required

to get the robot to drive a shape is equal to the number of sides of that shape. To

drive Edison in a circle, students need to expand on the idea and get a bit creative.

Tips and tricks

• If students are stuck, you can offer them the hint that ‘a shape with many very

small sides can closely approximate a circle’.

• The input parameter in the repeat block has a value cap of 1000. If students

put in a larger number, the block will automatically limit down to 1000.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Answer key

Question Type Sample answer Marking notes

1

RC

2 SE No, Edison isn’t actually driving in a
circle, but in a shape with lots of
sides. It looks like a circle, but it’s
not a real circle.

Students may be able
to get the robot to
approximate a circle
closely. However, the
robot is not driving in
one continuous arch but
making small forward
movements and turning
slightly each loop.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 77

Activity U3-1.1e Change it up: Drive a square?

Activity size Small

Delivery
recommendations

Complete activity U3-1.1 prior to this activity

Resources needed Basic supplies set, worksheet U3-1.1e, activity sheet U3-
1

Overview

Switch up the definite loop by introducing the random number input block. This

activity adds a bit of variety to the definite loop and is a nice way to begin to

showcase maths in coding. While the concepts are not explicitly introduced, the

random number input is stored in Edison’s memory as a variable value. Variables,

which are introduced in unit 5 of these lessons, are used extensively when using

Edison’s sensors in programs. This activity is a nice way to plant the seeds of what is

possible with data and Edison in your students’ imaginations.

Tips and tricks

• Due to minor mechanical differences in the motors and encoders inside

different Edison robots, students may need to adjust the input parameters of

the drive blocks in this program to suit their robots. To improve accuracy,

students can also add a ‘wait’ block with a sort input value (e.g. .2 secs) in-

between the drive commands.

• You can ask students to watch the program run on the worksheet and count

the number of sides the robot drives. From this, they can determine the

number of loops the program completed that run.

• While the number of loops the program will run is random, this is still a definite

loop. The program will loop for a definite number of times being one value of

the set of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

• This activity lends itself well to a probability extension activity.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Answer key

Question Type Sample answer Marking notes

1

SE The first time I ran the program the
robot drove around the square one
full time plus it went 3 more sides, so
it looped 7 times. The second time it
only made it halfway around the
square, so it only looped 2 times!
Different things happen every time
because the number of loops is
random, not always 4.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 78

Activity U3-1.1f Challenge up: Doodle-bot challenge

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U3-1.1f, EdCreate
kits/LEGO bricks and/or any other maker space
materials, felt-tip markers or equivalent

Overview

This challenge adds an engineering build element to the task of getting the robot to

drive in a way that makes a shape. An open-ended challenge, this activity offers

students very little guidance or limits. Student’s apply their understanding of

sequential programming and the definite loop control structure to get the robot to

drive in a shape. Designing and then building a way to attach a pen to the robot so

that this shape can be traced onto paper is the main challenge of this activity.

Tips and tricks

• Engineering a physical design that will put enough downward pressure on the

pen to allow it to mark the paper while still enabling the robot to drive is

challenging. Using felt-tip markers or another writing device that leaves ink

behind it easily will make this challenge more achievable.

• This challenge can be run as an engineering design challenge. You can read

more about using this challenge to teach engineering design at

https://meetedison.com/teach-engineering-design-with-edcreate/

Answer key

Question Type Sample answer Marking notes

1

SE Getting the pen attached to the robot
was hard. My first plan didn’t work at
all, and I had to start over. My second
plan used rubber bands to attach the
pen to the side of the robot and that
worked. I programmed the robot to
draw an octagon, but when I went to
run it, the rubber bands were over the
wheel, which meant that Edison
couldn’t drive. I finally attached the
pen to the back of Edison using some
building beams and rubber bands and
got the robot to drive. Edison drove in
the octagon shape but not didn’t draw
it very well because there wasn’t
enough pressure on the pen to hold it
down against the paper.

Student answers
should cover some of
the challenges or
problems they faced
and how they dealt
with those problems.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/teach-engineering-design-with-edcreate/

 www.edscratchapp.com 79

Activity U3-1.2 Let’s explore loops and sequence

Activity size Medium

Delivery
recommendations

Resources needed Basic supplies set, worksheet U3-1.2, activity sheet U3-5

Overview

This activity has students write an efficient program that gets Edison to drive a non-

regular shape. Students need to use both their mastery of the concept of sequence

and their understanding of the definite loop structure to accomplish this task. Using a

quadrilateral as the shape for Edison to drive is a great way to look at the limits of

loops and reinforce the importance of sequence in programming. By choosing the

correct starting point on a quadrilateral, a definite loop can still be used and will

make the program more efficient. However, the program needs additional blocks

outside of the loop in order to complete the shape.

Tips and tricks

• If students are struggling to determine what needs to go inside of the loop and

what is outside of it, work through the quadrilateral’s shape with your

students. Look at what repeats in the shape and what does not. Use this to

determine what steps can be inside the loop as well as the sequential order of

all the code needed in the program.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Answer key

Question Type Sample answer Marking notes

1

SE

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 80

2

SE I started the robot on the corner with the
obtuse angle, pointing towards the corner
with the right angle. That meant that the
first two sides that the robot needed to
drive were the same length and the first
two turns were both 90 degrees. That is
why the first part of my code is a loop
that repeats twice. The rest of the
program is individual blocks outside of a
loop because the other sides and angles
do not repeat on the shape, so cannot be
used with a loop in the program.

Student answers
should note a
correlation
between the start
point they used
and where the
program loops. NB:
Some start points
will not allow the
program to use a
loop.

Activity U3-1.3 Let’s explore forever loops

Activity size Small

Delivery
recommendations

It is recommended to introduce definite loops prior to this
activity.

Resources needed Basic supplies set, worksheet U3-1.3

Overview

This activity introduces the second major type of loop structure: the indefinite loop.

While definite loops are generally easier to understand than indefinite loops,

indefinite loops have a much wider range of application in computer programming.

The ‘forever’ loop, which is an indefinite loop, is introduced and explored in this

activity. Students use this new block in the semi open-ended egg-timer programming

task, allowing them to apply their understanding of sequence and loop structures.

Tips and tricks

• Any program can be stopped at any time by pushing the stop (square) button.

This will end a ‘forever’ loop and send the robot back into standby mode.

• You may want to encourage students to test what happens if they put both a

‘wait’ and a ‘beep’ block inside the ‘forever’ loop compared to having the ‘wait’

block outside and the ‘beep’ inside the loop. This is a great example of a

logical error: both and appear to be in

the correct sequence of ‘wait, then beep’, but the two programs will behave

completely differently.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 81

Answer key

Question Type Sample answer Marking notes

1

SE I don’t think you will be able to have
Edison do anything else after the
forever loop. For one thing, ‘infinity’
doesn’t end, so this loop with never
stop repeating. Also, the shape of the
loop is different from other blocks –
the bottom is square, so there’s not a
way to attach a next step block.

Students answers will
ideally note the block’s
function, shape or
both as support for
their answer.

1

RC

Activity U3-1.3a Challenge up: Earworm

Activity size Small

Delivery
recommendations

Complete activity U3-1.2 prior to this activity

Resources needed - Basic supplies set, worksheet U3-1.3a
- Optional: sheet music or access to look up music

Overview

This activity offers students another opportunity to use the ‘forever’ indefinite loop

structure in a simple, but meaningful, way. Using the ‘forever’ loop to repeat musical

note blocks is a good way to represent the common real-world phenomenon of

getting a song stuck in our heads – i.e. an earworm. Practising using programming

structures with real-world connections helps students connect the structure to its

purpose, allowing them to identify uses for those structures in later activities when

they tackle more complex programming challenges.

Tips and tricks

• If you want students to practice using the ‘forever’ loop but don’t want to

spend time on selecting music, you can ask students to open the demo

program Moving_with_music and modify the program to create an earworm

program using the tune in the demo program as their song.

• To emphasis where the loop ends, suggest students add a ‘wait’ block as the

final block inside their earworm program so that Edison will pause before

beginning the song again.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 82

Activity U3-1.4 Let’s explore stacking and nesting loops

Activity size Medium

Delivery
recommendations

Resources needed Basic supplies set, worksheet U3-1.4, activity sheet U3-6

Overview

Students are introduced to the concept of using multiple loops in a program both by

stacking them sequentially and by nesting one loop inside another. Nesting loops

may seem like a new way of manipulating the flow of a program, but it really is just

layering sequence. Working with programs with stacked and nested loops allows

students to apply the computational thinking practices of decomposition (chunking

problems into smaller parts) and pattern recognition as well as the application of

sequential logic.

Tips and tricks

• If students are struggling to understand the loop concept, particularly nested

loops, it can be helpful to draw out what is happening on paper or the

whiteboard. You can do this by writing down each command one at a time in

sequential order with your students or by writing down the program as it

appears and then use arrows to indicate each looping action.

• The activity in task 1 (looking at code and working out what it does without

running the program) is similar to a coding practice known as tracing. The

formal practice of tracing involves stepping through a program line by line,

recording important values. It is often done to help find errors or bugs in the

code, but it is also useful when you just need to understand what is happening

in a program. While the concept isn’t explicitly introduced in this activity, and

the need to record values in EdScratch is limited, getting students into the

habit of tracing through programs will help them improve their ability to debug

programs.

• If Edison’s wheels catch the edge of the activity sheet’s paper, this can throw

the robot off slightly. You can fix this by taping the activity sheet down or

replicating the activity sheet’s pattern on a larger piece of paper.

Answer key

Question Type Answer/Sample answer Marking notes

1 EA 3

2 EA beeps

3 EA 15

4 EA LED flashes

5 SE It’s three squares in a row.

6 SE I think I can use a nested loop to get
Edison to drive a square (which uses
a loop to drive and turn 4 times) and
then have that loop inside another
loop that repeats 3 times.

Ideally, students will
see a correlation
between the repeating
pattern and the nested
loop.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 83

Activity U3-1.4a Change it up: Edison the designer

Activity size Large

Delivery
recommendations

- Recommended to reinforce nested loops
- Highly recommended if students are struggling with loop
structures

Resources needed Basic supplies set, worksheet U3-1.4a, activity sheet U3-
7, craft supplies to make the test space

Overview

Give students the chance to put loops and sequence to the test by getting Edison to

drive in some fabulous designs. This activity has students look at designs to identify

repeating patterns, then construct a code solution as effectively as possible using

loops and nested loops.

Tips and tricks

• Physically creating the design by marking it out or drawing it can help

students recognise the repetitions that occur inside the pattern and better

connect these to the loop structures they need inside their EdScratch code

solution.

• Having students make their own patterns is a great way to have them think

critically about what repetition looks like in practice. Creating a design which

has a pattern inside a pattern is a great chance to apply computational

thinking to design.

Activity U3-1.4b Challenge up: Dance party!

Activity size Large

Delivery
recommendations

Resources needed - Basic supplies set, worksheet U3-1.4b
- Optional: devices for playing music

Overview

Get the robots moving by putting Edison’s outputs and the loop control structures

into action. This mini project has students apply their understanding of sequence,

repetition and problem-solving in a collaborative setting.

Tips and tricks

• This activity is designed to be used in groups to allow students to collaborate

on a project. Students may work together across each step of the design,

coding, and testing phases. Alternatively, students can divide up the work with

certain team members in charge of specific tasks.

• The Hokey Pokey makes a great song choice if students are stuck for

inspiration. The song lyrics lay out a plan for what students can program the

robots to do!

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 84

Lesson 2: Interrupts
Expand your understanding of computational logic by exploring interrupts in

programming. This lesson introduces new blocks from the ‘Events’ category in

EdScratch and uses these blocks to create subroutines. Students learn how

interrupt-triggered subroutines work and apply their understanding of sequence to

follow programs which include these types of subroutines. The computer

programming practice of commenting is also introduced as a tool to help students

track and explain their code and logic.

This lesson has a total of two base activities and five extension activities:

- U3-2.1 Let’s explore interrupting the main program

o U3-2.1a Change it up: Try a clap instead

o U3-2.1b Challenge up: Cheater bot

o U3-2.1c Challenge up: Pick one

- U3-2.2 Let’s explore comments in coding

o U3-2.2a Challenge up: Create and comment

o U3-2.2b Challenge up: Share your comments

Activity U3-2.1 Let’s explore interrupting the main program

Activity size Medium

Delivery
recommendations

Resources needed Basic supplies set, worksheet U3-2.1

Overview

This activity introduces a set of new terms and concepts all related to one key idea:

interrupting the main program. The fundamental computational thinking concept of

sequence is given a new dimension with the introduction of interrupts and

subroutines. These important programming concepts are critical for unlocking event-

based programming with Edison, enabling the power of the robot’s sensors to be

utilised.

This lesson activity reviews topics previously introduced to help students grasp how

event-driven interrupts work. Students are introduced to the ‘Events’ block category

in EdScratch and practice using a program which has an interrupt and subroutine to

create a ‘decider bot’ with their Edison robot.

Tips and tricks

• While interrupts disrupt the sequential flow of a computer program, they are

still bound by the same underlying logic. Subroutines will execute the

commands contained within the subroutine in sequential order. Once

complete, the program will return to the exact point of the main program

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 85

where it was prior to the interrupt, then continue to run the main program in

sequential order.

• The decider bot can be used to answer any binary question. You may elect to

have students create their own binary questions or create questions with two

‘a or b’ style options to answer with the decider bot.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA

The main program uses an indefinite
‘forever’ loop to make the robot turn
on the right LED, wait .03 secs, turn
the right LED off, turn the left LED on,
wait .03 secs, and turn the left LED
off. It will repeat that loop of actions
forever.

Students can word the
answer differently but
they should identify
the main program’s
actions as described.

2

SE All the Event category blocks are
yellow and shaped the same as the
‘Start’ block.

Students should
identify similarities
between the Event
blocks and the default
Start block.

Activity U3-2.1a Change it up: Try a clap instead

Activity size Small

Delivery
recommendations

Complete activity U3-2.1 prior to this activity

Resources needed - Basic supplies set, worksheet U3-2.1a
- Optional: worksheet U3-2.1 for reference

Overview

This extension activity is designed to be used in conjunction with activity U3-2.1.

Students once again program their Edison robots to be decider bots. This time,

instead of the interrupt being caused by a button press, it is caused when the robot

detects a clap.

While the primary objective of this activity is to reinforce the concepts of interrupts

and subroutines, the activity also serves as a good soft introduction to using Edison’s

sensors. This can be used as a preparatory activity to help students become

comfortable using sensors in programming before they begin to work with Edison’s

other sensors.

Tips and tricks

• The robots may struggle to detect sounds when there is a high level of

background noise. Having students tap a finger near the sound sensor on

their Edison will create the same effect as clapping.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 86

• Pressing the ‘play’ (triangle) button to run a program in Edison can create a

small amount of noise which can trigger ‘Clap detected’ interrupts. If students

have a ‘wait’ directly after the ‘Clap detected’ event (as in this example

program https://www.edscratchapp.com?share=pbz13M0a) this can make it

look like the program isn’t working correctly immediately after the ‘play’

(triangle) button is pressed. In actual fact, the event has just triggered,

causing the ‘wait’. Have students wait until the set time has elapsed, then they

will see the program will jump back to the main program, waiting for the next

event trigger.

Activity U3-2.1b Challenge up: Cheater bot

Activity size Small

Delivery
recommendations

Complete activity U3-2.1 prior to this activity

Resources needed - Basic supplies set, worksheet U3-2.1b
- Optional: worksheet U3-2.1 for reference

Overview

This extension activity is designed to be used in conjunction with activity U3-2.1.

Students once again program their Edison robots to be decider bots. This time, in

addition to the standard ‘pause’ subroutine running when triggered by an interrupt

from one of the buttons (round or triangle) being pressed, they need to add a second

subroutine to be a ‘cheat’ which gives a set answer whenever the other button is

pressed.

In addition to reinforcing the concepts of subroutines and interrupts, students learn

that they can have more than one subroutine per program. While not explicitly

introduced, this activity demonstrates branching in programming and serves as a soft

introduction to the concept of branching.

Tips and tricks

• An EdScratch program can only ever have one subroutine start with any given

event. That’s why any event block, such as the ‘round button pressed’ event

block, disappears from the block pallet when it is in the programming space.

• One possible answer to the cheater bot activity can be seen at

https://www.edscratchapp.com?share=K072a7Ym

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=pbz13M0a
https://www.edscratchapp.com/?share=K072a7Ym

 www.edscratchapp.com 87

Activity U3-2.1c Challenge up: Pick one

Activity size Large

Delivery
recommendations

Complete activity U3-2.1 prior to this activity

Resources needed - Basic supplies set, worksheet U3-2.1c, maker-space
materials to build the box
- Optional: worksheet U3-2.1 for reference

Overview

This extension activity is designed to be used in conjunction with activity U3-2.1.

Students once again program their Edison robots to be decider bots. This activity

then asks students to create a physical box or another system to use with their

decider bot. This physical design should allow Edison to ‘light up’ a choice. For

example, students could design a box with two windows cut out of the front that

words or pictures can be slid into. When the decider bot program runs, one of the

two options will be lit up by the LEDs.

This physical design activity reinforces the concepts of subroutines and interrupts in

programming and requires students to engage in problem-solving to create a

tangible use for such a program.

Tips and tricks

• Students may find they need to increase the wait time in their subroutine

depending on their design.

• The physical design needs to allow the robot’s buttons to be pressed in order

to trigger the subroutine. Remind students of this as they create their designs.

Activity U3-2.2 Let’s explore comments in coding

Activity size Medium

Delivery
recommendations

Resources needed Basic supplies set, worksheet U3-2.2

Overview

The practice of commenting in programming, and the ‘Comment’ block category in

EdScratch, are introduced in this activity. Students see what comments look like in

EdScratch and use an example program to help understand how comments are a

helpful tool.

Some professional programs dislike comments, claiming that comments are a waste

of time and arguing that ‘good code should be self-documenting’. Good comments

help make great code, however, and from an educational perspective, commenting

is a very helpful practice. Having students get into the habit of articulating what they

are trying to achieve, especially when working with more complex code structures,

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 88

allows them to be far more independent problem-solvers when debugging.

Commenting also allows for easier collaboration, as other students and facilitators

can more quickly understand the programmer’s intentions. Moreover, commenting

helps students practice explaining their ‘coder-thinking’ in human-readable terms.

Being able to communicate about technological work effectively is a key skill in any

digital literacy arsenal.

Tips and tricks

• If students are struggling to understand what comments are, consider

explaining comments using a printed document and some sticky-notes. Show

how you can add sticky-notes to the document so that someone else can

have some ‘hints’ about what is inside the document at specific points. The

sticky-notes are a helpful way to leave notes about the ‘code’ (the document)

but are not actually a part of the document.

• Remind students that Edison will ignore the comment blocks entirely. The

robots cannot understand these blocks no matter what is put inside them.

• Adding a comment that says what you want the program to do won’t make the

program do that thing: the actual code still needs to work.

• Simply adding comments doesn’t ‘debug’ a program. Comments can,

however, be a great tool for students to use to find and fix logical errors, help

them to work through their own thinking and to make changes to their code

when debugging.

• How to use comments in coding isn’t something that is strictly defined and

varies depending on the individual programmer. There are a few best practice

rules, however, which you may want to introduce:

o Comments should be easily understood – i.e. they should be ‘human

readable’ (rather than being code snippets).

o Comments should generally be at the top of the code they are

explaining.

o Comments only need to be added if the section of code is not self-

evident.

Answer key

Question Type Answer/Sample answer Marking notes

1

SE I think that Edison will drive between
1 and 5 squares going forwards
slowly, then drive between 1 and 5
triangles going backwards quickly.
Edison will then repeat that whole set
of actions 2 more times (a total of 3
times). If I clap at any time while the
program is running, Edison will beep.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 89

2

SE Yes, the comments do help because
with so many loops it is a bit tricky to
see what is going to happen. Having
the comments made the code for
driving the squares and triangle with
the random number loop for each
easier to understand.

This is an opinion-
based answer but
should be supported
by sound reasoning
no matter the
student’s opinion.

3

SE The program mostly worked the way I
expected but the robot beeped the
whole time, and I didn’t think that it
would because I never even clapped.

Any student
experience is fine, but
you may choose to
see if the student’s
answer from question
1 aligns with the
experience noted
here.

4

EA The bug box has a warning that
explains this: ‘Driving the motors
creates noise which may cause the
'clap' event to trigger. This may cause
the 'clap event' blocks to trigger
repeatedly while Edison is driving.’

The cause noted in
the sample answer is
the reason this is
occurring. Student
answers must note
this cause.

Activity U3-2.2a Challenge up: Create and comment

Activity size Large

Delivery
recommendations

Recommended as a capstone activity following the
completion of the ‘Let’s Explore’ activities from unit 3

Resources needed - Basic supplies set, worksheet 2.2a
- Optional: maker-space materials

Overview

Students demonstrate their learnings from the unit and flex their creative thinking in

this open-ended capstone project. This activity challenges students to create a

program of their own design using the programming structures, coding practices and

computational thinking skills they have learned. While a few parameters are given to

set minimum requirements for what the programs need to include, students are free

to design the program’s purpose.

Tips and tricks

• Remind students that Edison has three types of outputs: sounds, LEDs and

motor outputs.

• You may choose to encourage students to take a robotics build approach to

this project, designing a program that uses their robot as a part of an

engineered solution including some sort of physical build.

• Rather than having students copy out their programs manually, you can opt to

have them use screen-shot software to capture and print an image.

Alternatively, you can ask students to save their program as a file and provide

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 90

the location of the file or a link to where they save it on a shared drive as their

answer. Having a saved file will be beneficial if you are having students

complete activity U3-2.2b.

Answer key

Question Type Sample answer Marking notes

1

SE I want my program to turn Edison into
a quiz guide bot. This will be a little like
a decider bot, but instead of giving a
random answer, I want to use it to be
able to show someone if they
answered a question right or wrong
when I quiz them. It will have 2
subroutines, one to show that the
answer was correct and one to show it
was incorrect. When the program runs,
Edison will flash the LEDs on and off.
Once the person answers the question,
I will be able to push the triangle button
to play a tune and turn the lights off if
the answer is wrong or push the round
button to play a different tune while the
robot spins with the lights on if the
answer is correct.

For reference, this
link shows the
program initially
devised by the
programmer being
described in the
sample answer.

2

SE I used comments to label the
subroutines, so I knew which was for
the correct answer and which was for
the wrong answer. One comment is at
the top of the triangle button subroutine
and says ‘wrong answer’.

You may want to
confirm students are
using good
commenting
practices in their
choice of location
and comment
content.

3

SE One problem I had was that the music
was still playing when the subroutine’s
control of the LEDs had ended. I fixed
this in the triangle button subroutine by
removing the ‘play in background’
block. Another problem I had was that
the round button subroutine made the
robot spin forever. I fixed this by
changing the block to a drive block with
a set time instead of using a wait block
and the ‘set motors’ block.*

Any experience is
acceptable, but
generally speaking,
students will
encounter issues. If a
student has noted
that they
encountered no
problems, you may
want to check their
program and
encourage them to
take risks and think
creatively if the
program they
devised is very
simple.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=j0d9PEbJ
https://www.edscratchapp.com/?share=j0d9PEbJ

 www.edscratchapp.com 91

4

RC

Sample program available at
https://www.edscratchapp.com/?share
=GDLRNg0X

Having students
provide a link to their
locally saved file
instead of writing out
their programs will
enable them to reuse
the program if you
are having students
complete activity U3-
2.2b.

* NB: the student also could have fixed the issue of the robot spinning forever by

adding a ‘stop both motors’ block to the end of that subroutine. This is a good

example of multiple coding solutions being equally viable to debug a problem.

Activity U3-2.2b Challenge up: Share your comments

Activity size Medium

Delivery
recommendations

Resources needed Basic supplies set, worksheet U3-2.2b

Overview

Collaboration is at the heart of professional programming. Not only do teams of

people within an organisation come together on programming projects, individuals

from around the world swap and share code online. Good communication is key to

enabling collaboration in coding to be successful. This activity explores just that,

challenging students to use critical thinking to evaluate their own and a partner’s

approach to commenting.

Tips and tricks

• This activity can also be run with small groups instead of pairs.

• If students completed and saved their programs from activity U3-2.2a, you

can have them use the saved files to swap programs and get into the second

part of this activity more quickly.

• Students do not need to run their programs in the Edison robots for this

activity, but it can be helpful if they want to see what a program does in order

to decide about the comments included.

• You may want to provide students with some best-practice rules used in

commenting professionally. Alternatively, you may ask students to compare

their answers with these ‘best practices’ and discuss any differences:

o Comments should be easily understood – i.e. they should be ‘human

readable’ (rather than being code snippets).

o Comments should generally be at the top of the code they are

explaining.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 92

o Comments only need to be added if the section of code is not self-

evident.

Answer key

Question Type Sample answer Marking notes

1

SE 1. Comments should be kept pretty
short
2. Comments should not repeat
what’s already clear in the code
3. Comments should always be
included in tricky or confusing
sections
4. If the comment is because you
aren’t sure about something (e.g. for
debugging), include a question mark
in the comment

The rules students
come up with are far
less important than
the process – you may
want to have students
explain how they
came up with their
rules to understand
how they collaborated
and their logic.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 93

Unit 4: What if…

Explore selection and branching in computer programming through the key

computational concepts of conditionals and events. Key computer programming

skills, such as developing pseudocode, are introduced in this unit to help students

further their problem-solving abilities as they unlock the Edison robots’ various

sensor capabilities. Students learn about algorithms and use this understanding to

create programs enabling more autonomous behaviour from the robots.

Conditionals, sensing, interrupts and event-based programming are brought to life

through the physical computing activities in this unit.

Learning objectives

Students will:

• be introduced to the computational thinking concept of conditional selection

(i.e. branching)

• explore how inputs work with Edison using new blocks in the ‘Control’,

‘Sensing’ and ‘Events’ categories in EdScratch

• experiment using Edison’s sensors and input capabilities in working programs

• combine the concepts of sequence, loops and selection into working

programs in EdScratch

• develop a practical understanding of how to use pseudocode and comments

to plan, track and debug programs

• be introduced to the idea of algorithms in computer programming and learn

how algorithms differ from programs

• expand their understanding of robotic applications through projects using

sensing and inputs

Key ideas: conditionals (i.e. selection and branching), events, sensing and sensors,

pseudocode, algorithms

Lessons and activities in this unit

This unit includes two lessons with a total of nine base activities and 15 extension

activities.

Lesson 1: Conditionals

- U4-1.1 Let’s explore using conditionals

o U4-1.1a Change it up: Robot error or human error?

- U4-1.2 Let’s explore if statements

- U4-1.3 Let’s explore if statements and sequence

- U4-1.4 Let’s explore stacking and nesting if statements

o U4-1.4a Challenge up: Build a pulley

Lesson 2: Sensing

- U4-2.1 Let’s explore pseudocode

o U4-2.1a Change it up: Find the answer

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 94

- U4-2.2 Let’s explore Edison’s line tracker

o U4-2.2a Change it up: Drive inside a border

- U4-2.3 Let’s explore algorithms

o U4-2.3a Challenge up: There’s more than one way to follow a line

- U4-2.4 Let’s explore Edison’s obstacle detection

o U4-2.4a Change it up: Faster, faster, smash?

o U4-2.4b Challenge up: If line, go right. If obstacle, go left

o U4-2.4c Change it up: Where is the obstacle?

o U4-2.4d Challenge up: 3D maze

- U4-2.5 Let’s explore messaging with Edison

o U4-2.5a Change it up: Remote-controlled flag machine

o U4-2.5b Challenge up: Build and control the EdCrane

o U4-2.5c Challenge up: Firefighting water cannon

o U4-2.5d Challenge up: Semi-automated digger

o U4-2.5e Challenge up: Hazardous material removal

o U4-2.5f Challenge up: Homing pigeons

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 95

Lesson 1: Conditionals
Along with loops, conditionals are some of the most important building blocks

needed to create meaningful code in any computer programming language. This

lesson introduces this fundamental computational thinking concept, known as

‘conditional selection’ or ‘branching’. Developing a firm understanding of conditionals

is critical for success in the unit’s second lesson, which dives into Edison’s sensors.

Students develop an understanding of how sequential programming and

programming logic work in programs which use conditional structures. Conditional

structures make multiple options possible inside a program – different things will

happen depending on whether or not the condition is met. Both ‘until’ conditionals

and ‘if statement’ structures, as well as these structures’ corresponding EdScratch

blocks, are introduced in this lesson. Students create programs in EdScratch using

previously explored condition inputs (specifically, keypad button presses and claps)

with both ‘until’ and ‘if’ conditional structures to explore how conditions function in

practice.

This lesson has a total of four base activities and two extension activities:

- U4-1.1 Let’s explore using conditionals

o U4-1.1a Change it up: Robot error or human error?

- U4-1.2 Let’s explore if statements

- U4-1.3 Let’s explore if statements and sequence

- U4-1.4 Let’s explore stacking and nesting if statements

o U4-1.4a Challenge up: Build a pulley

Activity U4-1.1 Let’s explore using conditionals

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U4-1.1

Overview

Conditionals, one of the most basic building blocks needed to start writing

meaningful programs in any computer language, are introduced in this activity.

Conditionals in code are just like conditionals in life: one thing is conditional on

another thing happening first.

Although ‘if’ statements are the type of conditional structure most frequently used in

coding, this activity uses the ‘until’ blocks in EdScratch to introduce the concept of

conditionals. The ‘until’ blocks are used because the idea of an action happening

‘until’ a certain condition is met can be easier for students to grasp initially.

The worksheet first walks students through a program using an indefinite ‘repeat

until’ loop, which serves as the perfect starting point for understanding the overall

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 96

concept of conditionals. Students then use different sample programs to explore the

concept further, gaining practice using the diamond-shaped event conditions in

different ‘until’ blocks. The final question in the worksheet asks students to try to

identify a possible use of an ‘until condition’ structure in the technology they see in

their daily lives, helping them to begin to connect what they are learning with the

programming that surrounds us in the real world.

Tips and tricks

• If students are struggling with the concept of conditionals, work through daily

life examples that use conditionals. For example, the chore of washing dishes

can be thought about as ‘keep washing dishes until they are all clean’ and

putting away laundry as ‘keep folding the washing until the laundry basket is

empty’.

• Using programs that have button presses as events inside the program can

become confusing. Remind students that to run a program, they need to press

the ‘play’ (triangle) button once. This initial press ONLY starts the program – it

will not be considered a button press inside of the program. In other words,

once the program is running, the robot views the current condition as ‘triangle

button pressed? – NO’.

• The syntax of EdScratch uses ‘until’ rather than ‘while’ (which is common in

many general-purpose coding languages), but the code structure performs the

same conditional function. If you are teaching EdScratch along with another

language that uses ‘while’ conditionals, you may want to explain this

connection to students, noting that there is no functional difference between

‘while condition = true’ and ‘until condition = false’.

o Example: (while x < 4) is the same as (until x = 4). In both cases, the

condition breaks when x = 4.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA The ‘operators’ and ‘events’
categories have blocks that I think
can be used as conditional input
parameters. I think this because they
have diamond-shaped blocks and the
‘until’ blocks have diamond-shaped
holes.

Student answers
should note the
diamond-shape
correlation at a
minimum.

2

EA You need to press the ‘round’ button
while the program is running. This
gives the condition for the ‘repeat
until’ loop and ends the loop. The
program then moves on to the next
block in order, which is the ‘beep’
block.

Student answers
should identify that the
round button push
fulfils the conditional
and that the program
then continues in
normal sequential
order.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 97

3

EA

4

4

SE One real-life example of a program
that would be good to start with a
‘wait until condition’ block is a burglar
alarm. The event condition would be
a motion detection event. The
program would tell the alarm to wait
until motion was detected. Then, if
motion is detected, it would sound an
alarm.

This question pushes
students to try to tie
the programming
concepts of event
conditions and the
‘until’ conditional
structure in with the
world around them. It
is not expected that
they will explain
existing technology
accurately – only that
they attempt to apply
their understanding to
technology.

Activity U4-1.1a Change it up: Robot error or human error?

Activity size Medium

Delivery
recommendations

- Complete activity U4-1.1 prior to this activity
- Recommend to practice debugging with conditionals
- Strongly recommend if students are struggling with
conditionals

Resources needed Basic supplies set, worksheet U4-1.1a

Overview

Students work through a program which uses sequence, loops and conditionals to

uncover why the robot is not behaving the way the programmer expects. While this

may appear to be just a debugging activity, it is actually more about looking at

computational thinking in action. The activity walks students through an exercise of

decomposing a program and it’s ‘problems’ into smaller parts. Students then work

through the underlying logic of each issue. In doing so, students reinforce their

understanding of how conditionals work in combination with other elements of code.

The idea that there are limits to a computer’s capabilities is also introduced. While

the issues in this activity both turn out to be ‘human’, knowing that it is possible that

an issue is a limit of the robot’s capabilities is valuable for students to keep in mind

when working with more complex projects and programs.

Tips and tricks

• Using programs that have button presses as events inside the program can

become confusing. Remind students that to run a program, they need to press

the ‘play’ (triangle) button once. This press ONLY starts the program – it will

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 98

not be considered a button press inside of the program. In other words, once

the program is running, the robot views the current condition as ‘triangle

button pressed? – NO’.

• Problem-solving is a major part of coding. This activity can help students

practice problem-solving to fix a ‘broken’ program without feeling as frustrated

as they might if they had written the program themselves.

• Collaboration can make finding solutions in coding a lot easier. Consider

having students work on this activity in pairs or groups.

• You can set-up this activity in a different way to make it a more explicit lesson

on decomposition. Have students work in groups or as a whole class, first

looking at the programmer’s comments. Have students identify and break out

the two separate issues without the aid of the worksheet. Work through each

issue in turn, breaking each problem down into smaller pieces as needed.

Have students collaborate to try to solve each small chunk, then see how that

solves the initial comments from the programmer as a whole.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA The robot is spinning left slowly.

2

SE Yes, because that is what the first
block inside the loop tells the robot to
do.

If students did not
expect this behaviour,
you might want to
review how loops
work.

3

EA

The robot starts spinning right
because the condition of the ‘spin left’
block has been met, and so the robot
moves on to the next block in the
program which is ‘spin right’.

If students do not
understand why it is
moving left again, you
may want to review
conditionals.

4

SE The logical error is that the
programmer expected that as soon
as they pushed the round button, the
loop would break and the robot would
move on to the next line of code (the
beep). However, that’s not how loops
work. The program needs to have
each line of code inside the loop
complete, then return to the top of the
loop to check if the loop condition has
been met. If the condition has been
met, then the program will move on.
When the programmer pushed the
round button, but then didn’t push the
triangle button, the program was
stuck on the first line of code inside
the loop.

Student answers
should correctly
identify the logical
error.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 99

5

SE Dear future-me,
First off, don’t give up. Coding takes
practice and problem-solving. Here
are some other things you can try: a)
Walk through the code line by line,
following what each block is telling
the robot to do. b) Look at where the
problem is and test another program
with just that bit of code, to see
what’s happening. c) Ask a friend to
look at my program and see if they
can spot the issue.

Resilience is key to
coding! You may want
to remind students to
include ‘don’t give up’
in their list of
suggestions!

Activity U4-1.2 Let’s explore if statements

Activity size Medium

Delivery
recommendations

Resources needed Worksheet U4-1.2, activity sheet U4-1

Overview

This offline-activity introduces students to both ‘if’ and if-else conditionals. The idea

that programs can branch is explored, and students practice the concept using an

offline ‘treasure map’ with if-else instructions. The idea that conditionals allow a

computer to decide something is more evident when using ‘if’ statements than it is

when using ‘until’ conditional code blocks. Branching becomes especially clear when

using if-else conditionals. Practising the concept of branching offline helps students

become more familiar with the idea and see how branching works in combination

with other computational thinking processes, such as sequence and repetition.

Tips and tricks

• Some students may note that the ‘if-then’ pattern used in ‘if’ statements

appears to be the same as causality. In a way, this is an accurate

comparison. Once the code is written, the ‘THEN’ statement will run if the ‘IF’

condition is met. However, in code, there are not locked if/then rules. You may

want to explain that students set the ‘causality’ by determining the conditions

(the IF) and the conditional code (the THEN).

• The instructions to find the treasures are all written in a format that could be

considered rough pseudocode. The concept of pseudocode is introduced in

activity U4-2.1. You may choose to introduce the concept formally with this

activity or reference the two activities as you use each.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 100

Answer key

Question Type Answer/Sample answer Marking notes

1

SE IF my brother goes into my room,
THEN I tell on him.

Any if-then situation
which makes sense is
acceptable.

2 EA

E

3

EA

B

4

EA

D

Activity U4-1.3 Let’s explore if statements and sequence

Activity size Small

Delivery
recommendations

Resources needed Basic supplies set, worksheet U4-1.3

Overview

Building on students’ basic understanding of both ‘if’ and if-else conditionals, this

activity explores how ‘if’ statements work in EdScratch programs in relation to

sequence. Like all code, ‘if’ and if-else blocks follow fundamental computer logic,

including executing in sequential order. When the program encounters ‘if’

statements, the blocks are resolved in step-by-step sequential order. However,

because the code inside an ‘if’ block is conditional on that block’s condition being

met, it is possible for the program to skip the conditional code. Understanding this

behaviour is crucial for students to fully comprehend conditionals and be able to

apply the logic of conditions in their computational thinking.

This activity also examines if-else blocks in sequential programs in EdScratch.

Understanding that only the ‘if’ or ‘else’ section of code will run is critical for students

to be able to write and follow programs using this structure.

Tips and tricks

• If students are struggling to follow what is happening in a program with ‘if’ or

if-else blocks, you may want to encourage them to add comments into their

programs. Writing out notes in their own words can help students understand

a program’s conditional flow.

• Remind students that they can always run a program in EdScratch with

Edison to check their thinking and to see how a program works.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 101

Answer key

Question Type Answer/Sample answer Marking notes

1

EA

The round button needs to be
pressed for the ‘if’ condition to
be met.

2

SE I couldn’t get the conditional
code to run, even when I
pressed the round button. When
I ran the program, it beeped,
then spun 60 degrees to the
right. It skipped the code inside
the ‘if’ block.

Students are unlikely to be
able to get the conditional
code to run as there is not
enough time between when
they press the triangle
button to start the program
and when the program is
checking for the round
button press for them to
have the button press
completed. If they can
complete the button press
in time, their answers
should note that all code
runs in sequence.

3

SE I think that the conditional code
(the stuff inside the ‘if’ block)
gets skipped if the condition is
not met and the program moves
on to the next item of code after
the ‘if’ block in sequential order.

Student answers will ideally
note that conditional code is
skipped if the condition is
not met.

4

EA

No, the robot would not beep.
This is because the beep is
inside the ‘if’ part of the block
which will only run if the robot
detects a round button press.

5

EA There are 3 actions the robot
will always take: 1) wait .5 secs,
2) check to see if a round button
press has occurred and 3) turn
the left LED on.

If students only identify 1)
and 3), you may want to
explain that the if-statement
condition check always
occurs, regardless of the
outcome.

Activity U4-1.4 Let’s explore stacking and nesting if statements

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U4-1.4

Overview

Using conditionals effectively allows students to create meaningful programs and tap

into Edison’s powerful sensors. This means that students need to have a clear

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 102

understanding of how conditionals, especially ‘if’ and if-else structures, work in

programs, including when these structures are stacked or nested.

Being able to follow the flow of a program which contains conditionals and loop

control structures can seem like quite an imposing task at first. This activity

challenges students to work through different programs, following the flow of the

code to understand how the programs work. Putting their computational thinking

skills to work, students will decompose programs to understand what will happen in

different conditional situations. They then see the power of branching programs

nested in loops by writing and testing a clap-controlled driving program.

Tips and tricks

• Nesting sensor-based conditionals in loops is a very common way to use

Edison’s sensors. You may want to spend extra time on this activity to ensure

students are comfortable using nested and stacked ‘if’ statements.

• For the clap-controlled driving program: the robots may struggle to detect

sounds when there is a high level of background noise. Having students tap a

finger near the sound sensor on their Edison will create the same effect as

clapping.

• Having students add comments to their clap-controlled driving program can

help ensure that students understand what is happening inside the code.

• The clap-controlled driving program in this activity functions the same way as

the clap-controlled driving program activated by the clap-controlled driving

barcode program. You may choose to have students revisit that barcode to

see this for themselves.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA

If you never press the round button,
the condition will never be met, so the
‘else’ code will run each repetition of
the loop. The robot will spin right 60
degrees, then beep, and repeat those
actions forever.

2

EA

If you never press the round button,
the condition will never be met, so the
‘if’ code will be skipped each
repetition of the loop. The robot will
beep each loop forever.

3

EA

To get the robot to drive backwards,
first, you need to press the round
button while the program is running.
The robot will wait for .5 seconds then
check if the triangle button has been
pressed. Since it has not, it will run
the ‘else’ code and drive backwards.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 103

4

SE I think that the program uses the
‘forever’ block so that the program will
keep running loop after loop as long
as you want. If you didn’t have the
forever block, the program would tell
the robot to wait for a clap, and then
check for a second clap, but it would
only do this one time. Once it
detected either one or two claps and
moved accordingly, the program
would end.

Students should
identify that without
the forever block, the
program would only
run once.

Activity U4-1.4a Challenge up: Build a pulley

Activity size Project

Delivery
recommendations

Recommend as a capstone activity following the
completion of the Let’s Explore activities from unit 4,
lesson 1

Resources needed Basic supplies set, worksheet U4-1.4a, maker-
space/crafting supplies, EdCreate kits/LEGO bricks

Overview

This open-ended engineering and programming challenge has students apply their

understanding of ‘if’ statements to create a working pulley system using Edison.

Tips and tricks

• This activity works well in pairs or small groups.

• By design, this challenge offers minimal instructions and only a few hints. This

is to encourage creativity and experimentation. You may choose to add more

structure (for example, working through the physical design process with

students) to the activity as best fits your students’ needs.

• This challenge can be run as an engineering design challenge. You can read

more about teaching engineering design at https://meetedison.com/teach-

engineering-design-with-edcreate/

• There is no ‘right’ answer to what the pulley build and program should look

like, but here is what one sample solution looks like:

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/teach-engineering-design-with-edcreate/
https://meetedison.com/teach-engineering-design-with-edcreate/

 www.edscratchapp.com 104

o Physical design: (adapted from the EdCrane EdBuild):

o EdScratch pulley program:

https://www.edscratchapp.com?share=wbJRrQbj

Answer key

Question Type Sample answer Marking notes

1

SE Regarding the program, my first
version had the ‘if’ statements nested
the wrong way. Both were in the ‘if’
part of the if-else block, so the only
way to move the pulley backwards
was to push the round button and
THEN the triangle button. I got a
classmate to look at my program, and
she spotted this error. Once I moved
the triangle button ‘if’ block to the
‘else’ section of the if-else block, it
worked!
The best part of this project was
working with other people. When I got
stuck and frustrated, I was able to get
help from classmates, and then we
fixed the problems together! That was
a lot of fun.

Any student
experience is
acceptable. You may
also choose to have
students provide
photos or diagrams of
their pulley designs
and submit their
program solutions.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/edcreate/
https://www.edscratchapp.com/?share=wbJRrQbj

 www.edscratchapp.com 105

Lesson 2: Sensing
This relatively large lesson expands students’ understanding of conditionals, loops,

sequence, and interrupts by using Edison’s various sensors in programs. Students

further explore how inputs work in Edison using new blocks in the ‘Control’, ‘Sensing’

and ‘Events’ categories in EdScratch.

In addition to discovering how Edison’s individual sensors work and can be

programmed, this lesson uses Edison’s sensor capabilities to explore key computer

science concepts and skills in practical applications. This lesson introduces the

computer science practice of pseudocode, the idea of algorithms, and the important

but often misunderstood concept of how algorithms differ from programs. Students

practice using pseudocode and algorithms both to plan out programs and to help in

debugging their work. By experimenting with Edison’s sensors and input capabilities

in working programs, students expand their understanding of robotics applications

and autonomous robotic behaviours in real-world contexts.

This lesson has a total of five base activities and 13 extension activities:

- U4-2.1 Let’s explore pseudocode

o U4-2.1a Change it up: Find the answer

- U4-2.2 Let’s explore Edison’s line tracker

o U4-2.2a Change it up: Drive inside a border

- U4-2.3 Let’s explore algorithms

o U4-2.3a Challenge up: There’s more than one way to follow a line

- U4-2.4 Let’s explore Edison’s obstacle detection

o U4-2.4a Change it up: Faster, faster, smash?

o U4-2.4b Challenge up: If line, go right. If obstacle, go left

o U4-2.4c Change it up: Where is the obstacle?

o U4-2.4d Challenge up: 3D maze

- U4-2.5 Let’s explore messaging with Edison

o U4-2.5a Change it up: Remote-controlled flag machine

o U4-2.5b Challenge up: Build and control the EdCrane

o U4-2.5c Challenge up: Firefighting water cannon

o U4-2.5d Challenge up: Semi-automated digger

o U4-2.5e Challenge up: Hazardous material removal

o U4-2.5f Challenge up: Homing pigeons

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 106

Activity U4-2.1 Let’s explore pseudocode

Activity size Small

Delivery
recommendations

Resources needed Worksheet U4-2.1, activity sheet U4-2

Overview

This offline activity introduces pseudocode, a helpful tool for tackling the important

task of planning programs. Planning out programs effectively is an important skill for

students to develop when mastering computational thinking. Being able to plan

effectively requires students to apply the computational thinking concepts that they

have learned (including sequence, repetition and conditionals) into a logical flow.

Pseudocode is one of the most efficient tools for planning computer programs and is

used by many professional programmers.

Developing a level of comfort with pseudocode allows students to plan out programs

and algorithms with confidence. Working from a plan makes coding faster and

debugging and problem-solving more effective. The ability to create program plans in

pseudocode also allows students to concentrate on the logic their program needs

without getting caught up in minor details or syntax. This will allow students far more

clarity when planning programs using sensors, data, or complex control structures.

Competency with pseudocode also improves students’ abilities to apply their

computational understanding to other programming languages, including text-based

languages.

Tips and tricks

• The pseudocode in the worksheet questions uses indentation to indicate

when actions are inside of control structures. Following the left-most

alignment of the pseudocode in the worksheet questions will help show where

a loop or ‘if’ statement ends and the next command after that control structure

begins.

• Remind students that indented pseudocode is inside a loop or ‘if’ statement.

In cases where there are nested conditionals or loops, the pseudocode will

show this ‘nesting’ by being indented more than one level.

• The instructions to find the treasures in activity U4-1.2 are written in a format

that could be considered rough pseudocode. You may choose to reference

activity U4-1.2 as another example of pseudocode or use the two activities in

conjunction.

Answer key

Question Type Answer Marking notes

1 EA The letter E

2 EA The number 4

3 EA The number 4

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 107

Activity U4-2.1a Change it up: Find the answer

Activity size Small

Delivery
recommendations

Complete activity U4-2.1 prior to this activity

Resources needed - Worksheet U4-2.1a, activity sheet U4-2
- Optional: computers or tablets to look at EdScratch

Overview

Designed for use in conjunction with activity U4-2.1, this activity builds students’

understanding and competency with pseudocode. Students practice writing

pseudocode instructions, then reading and following pseudocode written by a

classmate.

Tips and tricks

• While this activity requires students to work with at least one partner, you can

also have students work in small groups divided into teams. Each team can

work together to plan, write and test the pseudocode before exchanging with

the opposite team.

Answer key

Question Type Sample answer Marking notes

1

SE Start on 8 facing north
repeat 3 times
 forwards until letter

right 90
repeat 2 times
 forwards 2

if animal
 right 90 degrees
else
 left 90 degrees

forwards until letter

Lands on the answer of: C

You may choose to
have students also
submit where their
program is meant to
end to check
accuracy.

Activity U4-2.2 Let’s explore Edison’s line tracker

Activity size Medium

Delivery
recommendations

Resources needed - Basic supplies set, worksheet U4-2.2, activity sheet U4-
3
- Optional: EdMats, supplies for making your own lines

Overview

This two-part activity kick-starts students’ exploration of using Edison’s line tracker in

EdScratch programs. Students first become familiar with the Edison robot’s line

tracking sensor technology, learning the fundamentals of how the sensor works. By

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 108

experimenting with the line tracker’s red LED on different coloured surfaces,

students learn how the robot can use the sensor to detect whether it is driving on a

reflective or non-reflective surface.

Students then practice using the line tracking sensor in an EdScratch program to get

the robot to drive until it detects a black (i.e. non-reflective) line.

Tips and tricks

• If you want to explore more about how Edison’s line tracking sensor works,

consider having a breakout session to explore how light reflection and

absorption works, including for coloured light.

• You can also use EdMats or make your own test space to run the ‘drive until

black’ program.

• Remind students to develop the habit of checking the bug box in EdScratch.

This can be especially helpful when working with sensors.

Answer key

Question Type Answer Marking notes

1

EA

A white surface reflects more light
back to Edison than a black surface
reflects. I think this because the spot
from the red LED is brighter on a
white surface (compared to black)
and that means more of the light is
being reflected (rather than
absorbed).

The light will appear
brighter on a white
surface. If students
note black, consider
reviewing this with
them.

2

EA

Colour Reflective or non-reflective?

Red reflective

Blue non-reflective

Green non-reflective

Activity U4-2.2a Change it up: Drive inside a border

Activity size Medium

Delivery
recommendations

Complete activity U4-2.2 prior to this activity

Resources needed - Basic supplies set, worksheet U4-2.2a, activity sheet
U4-4
- Optional: EdMats, supplies for making your own
lines/borders

Overview

Students put their understanding of pseudocode and Edison’s line tracker to the test

in order to create a program that gets Edison to drive inside a black border. By first

planning out their program, students apply algorithmic thinking to how the line

tracking sensor can be used to create a program where Edison will not cross a black

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 109

line. Students then translate their plan into EdScratch and test their program with the

robot.

Tips and tricks

• You can also have students use EdMats or make their own test space to run

their ‘drive inside a black border’ programs.

• The barcode program ‘bounce in borders’ has Edison drive inside a black

border. You may choose to have students run the barcode program and

compare the robot’s behaviour when using the barcode program to the

behaviour displayed when running their ‘bounce in borders’ style program.

• Encourage students to work out the source of any errors they encounter. Two

common logical errors students may make when creating this program are: 1)

forgetting to turn on the line detection sensor, or 2) forgetting to use an

indefinite loop.

• This activity can be used as an extension activity following activity U4-2.3

Let’s explore algorithms, emphasising that students can create an algorithm

for getting Edison to drive inside any border.

Answer key

Question Type Sample answer Marking notes

1

SE turn on line detection

forever
 drive forwards until non-reflective
 drive backwards
 turn

Student answers
may not be
completely correct
compared to the
final program –
that’s okay.

Activity U4-2.3 Let’s explore algorithms

Activity size Medium

Delivery
recommendations

Resources needed Basic supplies set, worksheet U4-2.3, activity sheet U4-4,
supplies for making your own lines/borders and/or
EdMats

Overview

The concept of algorithms is introduced in this lesson along with the important but

often misunderstood concept of how algorithms differ from programs. Students learn

that algorithms are a tool for solving sets of problems and can guide the logic used in

computer programs. They explore an algorithm for getting Edison to follow any black

line using the robot’s line tracking sensor and see how the logic of the algorithm

translates into an EdScratch program.

Learning that algorithms can inform computer programs, but that not all programs

are algorithms, is an important concept to enable students to be able to practice so-

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 110

called ‘algorithmic thinking’. Understanding that some problems need a specific,

dedicated program to solve while others can be solved using an algorithm is an

important skill for students to develop.

Tips and tricks

• For the line tracking program to work, the difference between the dark and

light surfaces needs to be easily understood by the robot, and there needs to

be enough white space between any curves in the line. The lines that

students make for Edison to follow need to be dark (e.g. black), approximately

1.5cm (0.6 inches) wide, and on a white background. Alternatively, they can

use an EdMat.

• Make sure students start by placing Edison with the line tracking sensor on

white. The robot can start near the black line but not on top of it.

• You may choose to have students run the barcode program ‘follow a line’ to

see the same algorithm from the worksheet at work in that barcode program.

• Activity U4-2.2a can be used as an extension activity following this activity.

You can demonstrate to students that they can create an algorithm for getting

Edison to drive inside any black border.

Answer key

Question Type Answer/Sample answer Marking notes

1

EA The robot ‘waddles’ along the edge of
the line. This is because the algorithm
says that the robot should drive
forwards to the left until the line tracking
sensor is on a non-reflective (black)
surface. That pushes the sensor along
until it finds a black line to the left. Then
the logic says that the robot should drive
forwards to the right until the line
tracking sensor is on a reflective (white)
surface. That pushes the sensor off
black, onto white. The robot alternates
this behaviour, moving back and forth
on the edge of the line. This makes the
robot ‘waddle’ left and right as it goes
along the line.

Students should
identify the robot’s
waddle is caused
by the program
logic going back
and forth between
the two ‘until’
blocks.

2

SE Edison was able to follow my line except
in one spot where the line curved very
sharply. The robot kept missing the
curve and catching the other part of the
line. I think this happened because the
two parts of the line were really close
together, so the robot would just find a
non-reflective spot and start following it,
even though it wasn’t the part of the line
I wanted it to follow.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 111

Activity U4-2.3a Challenge up: There’s more than one way to follow a line

Activity size Large

Delivery
recommendations

Complete activity U4-2.3 prior to this activity

Resources needed - Basic supplies set, worksheet U4-2.3a, activity sheet
U4-4
- Optional: EdMats, supplies for making your own
lines/borders

Overview

The idea that there is no one ‘right’ way to program is brought to life in this activity.

Students look at the algorithm for getting Edison to follow any black line using the

robot’s line tracking sensor and use its logic to come up with multiple programs. This

semi open-ended programming challenge asks students to think about different ways

the same underlying logic can be manifested in an EdScratch program. Having an

appreciation that there are many ways to program a solution is an important skill for

students to develop and will make them better able to collaborate effectively on

coding projects. Thinking of multiple ways to apply the algorithm’s logic also

challenges students to apply their understanding of conditionals, interrupts and

sensor inputs into working programs.

Tips and tricks

• Encourage students to work through the logic of the algorithm looking at

different blocks in EdScratch. Testing things that do not end up working is

fine! Explore why an attempt doesn’t work and iterate to develop a program

that does.

• For the line tracking program to work, the difference between the dark and

light surfaces needs to be easily understood by the robot, and there needs to

be enough white space between any curves in the line. The lines that

students make for Edison to follow need to be dark (e.g. black), approximately

1.5cm (0.6 inches) wide, and on a white background. Alternatively, they can

use an EdMat.

• Make sure students start by placing Edison with the line tracking sensor on

white. The robot can start near the black line but not on top of it.

• You may want to have students compare answers with each other to see all

the different variations of programs that are possible.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 112

Answer key

Question Type Sample answer Marking notes

1

RC

Program 1: This program uses an
if-else statement to get Edison to
follow a line
https://www.edscratchapp.com?sh
are=7bx9x9DZ

Any program that gets
Edison to follow any
line is acceptable.

2 RC Program 2: This program uses
events to get Edison to follow a
line
https://www.edscratchapp.com?sh
are=pDmX9Jbq

Any program that gets
Edison to follow any
line is acceptable.

Activity U4-2.4 Let’s explore Edison’s obstacle detection

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U4-2.4, objects for making
obstacles

Overview

This three-part activity kicks off students’ exploration of using obstacle detection with

Edison in EdScratch programs. Students first become familiar with the Edison robot’s

infrared light sensor technology, learning the fundamentals of how the sensor works

and how it can be used to detect obstacles. A basic program using obstacle

detection is also introduced to explain how the sensor can be used to detect

obstacles in EdScratch programs. Finally, students practice using obstacle detection

by creating an algorithm to detect and avoid obstacles, then translate the logic of the

algorithm into an EdScratch program.

Tips and tricks

• If any of the Edison robots are not detecting obstacles or are reacting to

obstacles only when they are very close to the obstacle, you may need to

calibrate the obstacle detection in that robot. Use the barcode and instructions

in Appendix 2 of this guide to calibrate a robot’s obstacle detection.

• Obstacles need to be opaque but not too dark (e.g. not black) and at least as

tall as Edison for the robot to detect them.

• You may choose to have students run the barcode program ‘avoid obstacles’

to see the same algorithmic logic at work in that program.

• You may choose to have a breakout session on the electromagnetic spectrum

and where IR and visible light fall within the spectrum in conjuncture with this

activity.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=7bx9x9DZ
https://www.edscratchapp.com/?share=7bx9x9DZ
https://www.edscratchapp.com/?share=pDmX9Jbq
https://www.edscratchapp.com/?share=pDmX9Jbq

 www.edscratchapp.com 113

Answer key

Question Type Answer/Sample answer Marking notes

1

EA

turn obstacle detection beam on
loop forever
 drive forwards
 if obstacle detected anywhere
 drive backwards
 turn

Student answers should
have the basic logic of
the sample answer but
can be explained
differently.

2

SE When I first went to write my
algorithm, I had to think about what
behaviour the robot needed to take
to avoid any obstacle. This stumped
me initially. I picked up my robot and
pretended to drive it towards
different obstacles on the desk,
moving to avoid each one. By doing
this a few times, I realised that if the
robot backs up and then turns away,
it will always avoid the obstacle.

Having students
articulate problems they
encounter as well as
the actions they took to
resolve the issues helps
bring explicit attention
to their problem-solving
skills.

Activity U4-2.4a Change it up: Faster, faster, smash?

Activity size Small

Delivery
recommendations

Complete activity U4-2.4 prior to this activity

Resources needed Basic supplies set, worksheet U4-2.4a, objects for
making obstacles

Overview

Students practice using obstacle detection in working programs with their Edison

robots while exploring the ideas of hardware limitations and trade-offs in

programming. An Edison robot’s obstacle detection relies on the robot being able to

react to reflected IR light bouncing back to it from objects. When the robot travels at

fast speeds, the time it takes for the light to reflect and be detected can outstrip the

time it takes for the robot to smash into the obstacle. Testing different speeds in an

obstacle detection program lets students explore this trade-off between speed and

accuracy first-hand.

Tips and tricks

• If any of the Edison robots are not detecting obstacles or are reacting to

obstacles only when they are very close even at low speeds, you may need to

calibrate the obstacle detection of that robot. Use the barcode and instructions

in Appendix 2 of this guide to calibrate a robot’s obstacle detection.

• Obstacles need to be opaque but not too dark (e.g. not black) and at least as

tall as Edison for the robot to detect them.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 114

Answer key

Question Type Sample answer Marking notes

1

SE Edison cannot detect the obstacle in
time and crashes into it.

Students should find
that the robot is
unable to detect and
react to obstacles if
Edison is moving very
fast.

1

SE The faster Edison drives, the less
time there is for the robot’s obstacle
detection process to take place. The
less time for the process, the worse
the robot’s ability to detect obstacles.

Students should note
the base reasoning in
the sample answer in
their answer.

Activity U4-2.4b Challenge up: If line, go right. If obstacle, go left

Activity size Medium

Delivery
recommendations

- Complete activity U4-2.2 prior to this activity
- Complete activity U4-2.4 prior to this activity

Resources needed - Basic supplies set, worksheet U4-2.4b, activity sheet
U4-5, objects for making obstacles
- Optional: supplies for making your own sensor-driven
‘mazes’

Overview

Designed to be used after students have explored both Edison’s obstacle detection

beam and line tracking sensor, this programming challenge gets students to apply

computational thinking to use the sensors to solve a ‘grid maze’. Students explore

using multiple sensors in a single program. This task also requires that they combine

multiple computational elements, including sequence, conditionals, input-outputs,

and repetition.

The activity also lays out the option for students to design their own physical setup to

be solved using the same basic idea of ‘if line, do X. If obstacle, do Y.’

Tips and tricks

• If any of the Edison robots are not detecting obstacles or are reacting to

obstacles only when they are very close even at low speeds, you may need to

calibrate the obstacle detection of that robot. Use the barcode and instructions

in Appendix 2 of this guide to calibrate a robot’s obstacle detection.

• Obstacles need to be opaque but not too dark (e.g. not black) and at least as

tall as Edison for the robot to detect them.

• An example solution using the activity sheet can be seen at

https://www.edscratchapp.com?share=8DQGkG0B

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=8DQGkG0B

 www.edscratchapp.com 115

Activity U4-2.4c Change it up: Where is the obstacle?

Activity size Small

Delivery
recommendations

Complete activity U4-2.4 prior to this activity

Resources needed Basic supplies set, worksheet U4-2.4c, objects for
making obstacles

Overview

This activity reinforces students’ understanding of how Edison’s infrared sensor can

be used to detect objects and further explores Edison’s ability to detect the location

of an obstacle relative to the robot. With the requirement to use interrupts from the

‘events’ category of blocks in EdScratch, students use their creativity to make three

different subroutines for the robot to run, outputting different reactions depending on

the location of the obstacle it detects.

Tips and tricks

• If any of the Edison robots are not detecting obstacles or are reacting to

obstacles only when they are very close, you may need to calibrate the

obstacle detection of that robot. Use the barcode and instructions in Appendix

2 of this guide to calibrate a robot’s obstacle detection.

• One of the best obstacles for this activity is actually students’ own hands!

Have students face their Edison away from them, then test the program by

putting a hand down in front of Edison to the right, then repeat on the left.

Finally, have them put their hand right in front of the robot.

• An example solution to this activity can be seen at

https://www.edscratchapp.com?share=Eb2X7wYq

Activity U4-2.4d Challenge up: 3D maze

Activity size Project

Delivery
recommendations

Complete activity U4-2.4 prior to this activity

Resources needed Basic supplies set, worksheet U4-2.4d, supplies for
building the 3D maze

Overview

By creating and then solving their own three-dimensional mazes, students apply

computational thinking and their understanding of Edison’s infrared-driven obstacle

detection to this ‘real-world’ project, getting Edison to operate like a driverless car.

Just as driverless car technology is yet to be perfected, getting Edison to drive

autonomously through a 3D maze using obstacle detection is not without pitfalls.

This project is a great challenge for students to practice problem-solving,

decomposition and collaboration.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=Eb2X7wYq

 www.edscratchapp.com 116

Tips and tricks

• A great example of a 3D maze that can be readily solved using obstacle

detection can be seen in the video Meet Edison - Autonomous Robotics Maze

Challenge #1 available at https://www.youtube.com/watch?v=caVNQYKr-_4

• Remind students of the trade-off between speed and accuracy with obstacle

detection: the faster Edison drives, the less time there is for the robot’s

obstacle detection process to take place. The less time for the process, the

worse the robot’s ability to detect obstacles.

• Edison’s obstacle detection uses infrared light which, when Edison is moving,

can be far from perfect. As the robot moves, its position relative to objects

changes. ‘Old’ infrared light bouncing off a wall can be detected from a new

position, causing the robot to react in a way the programmer might not expect

or want. Experimenting with using location-based obstacle detection events in

different ways will let students create different options to get their robots

autonomously through their maze.

Activity U4-2.5 Let’s explore messaging with Edison

Activity size Medium

Delivery
recommendations

It is recommended to complete activity U4-2.4 prior to
this activity

Resources needed Basic supplies set, worksheet U4-2.5

Overview

This activity introduces students to using the Edison robot’s infrared sensor to send

and receive IR messages. The robot’s IR receiver can be used in multiple ways: to

detect IR light reflected back to the robot from objects as part of Edison’s obstacle

detection beam, to detect IR messages from other Edison robots, and to detect IR

messages from paired TV/DVD remote controls. Students learn the basics of how IR

messages work in this activity, practising sending and receiving messages between

multiple Edison robots.

Tips and tricks

• This activity requires sets of at least two robots, so students should work in

pairs or groups. The activity can also be done as a whole class activity, with

one robot sending out a message for all the others to detect.

• Edison’s messaging uses infrared which has a limited range, similar to that of

a TV remote control. If students are struggling to get a ‘receiving’ robot to

detect the message, have the students move the ‘receiving’ robots in closer to

the ‘sending’ robot.

• If multiple groups are running this activity near each other, students may

encounter ‘cross-talk’ with robots reacting to the messages being sent out by

other groups.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.youtube.com/watch?v=caVNQYKr-_4

 www.edscratchapp.com 117

• To learn more about TV/DVD remote controls and Edison, consider using

activity U1-1.2c Change it up: TV remote control barcodes and/or activity U4-

2.5a Change it up: Remote-controlled flag machine

Answer key

Question Type Answer Marking notes

1

EA

The ‘send IR message’ block is in the
LEDs category in EdScratch because
it is an output that uses Edison’s
infrared LEDs.

Activity U4-2.5a Change it up: Remote-controlled flag machine

Activity size Project

Delivery
recommendations

- Complete activity U4-2.5 prior to this activity
- Activities U4-2.5a, U4-2.5b, U4-2.5c, U4-2.5d and U4-
2.5e are all robotics build projects using IR messaging.
Consider using at least one.

Resources needed Basic supplies set, worksheet U4-2.5a, activity sheet U4-
6, TV/DVD remote controls, maker-space supplies for
creating the flags, EdCreate kits and/or other supplies for
attaching the flags

Overview

Students learn how to use Edison’s programmable TV remote codes in this activity

and then apply this knowledge into a robotics build project to create a remote-

controlled flag machine. This semi open-ended project challenges students to create

a physical computing solution with real-world application, applying their

understanding of coding concepts, including conditionals and sensing.

Tips and tricks

• Students are welcome to build a flag machine in a different way to the project

description in this activity or to come up with their own remote code detecting

creation.

• You may want to familiarise students with using TV/DVD remote controls and

Edison using activity U1-1.2c Change it up: TV remote control barcodes prior

to this activity.

• A variation of this activity using IR messaging with variables is included in Unit

5, activity U5-1.4b Challenge up: Edison-controlled flag machine. You may

choose to reference these two activities when using either or run them as two

programming challenges for the one build design.

• There is no ‘right’ answer, but here is what one sample solution looks like:

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 118

o Physical design:

o Program: https://www.edscratchapp.com?share=RDaeaaDV

Activity U4-2.5b Challenge up: Build and control the EdCrane

Activity size Project

Delivery
recommendations

- Complete activity U4-2.5 prior to this activity
- Activities U4-2.5a, U4-2.5b, U4-2.5c, U4-2.5d and U4-
2.5e are all robotics build projects using IR messaging.
Consider using at least one.

Resources needed Basic supplies set, worksheet U4-2.5b, activity sheet U4-
6, TV/DVD remote controls, 1 EdCreate kit per EdCrane,
EdCrane build instructions set (available at
https://meetedison.com/content/EdCreate/EdBuild-
EdCrane-instructions.pdf)

Overview

Using Edison to create programmable robotic builds is one of the most exciting

things students can do with the robots. The EdBuild projects using the pre-set

instructions and EdCreate kits are an excellent way to give students exposure to

interactive engineering.

Like other EdCreate EdBuilds, the EdCrane responds to a TV or DVD remote

control. However, the EdCrane uses the programmable TV remote codes, not the

pre-set action barcodes. The EdCrane uses remote control commands in

combination with a downloaded program from EdScratch, telling the EdCrane what

action to perform when a specific remote code is detected.

Tips and tricks

• This project is ideal for pair or group work.

• Students may find it easiest to first lay out all of the EdCreate pieces onto

their work surface and organise the parts into groups of the same piece type

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=RDaeaaDV
https://meetedison.com/content/EdCreate/EdBuild-EdCrane-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdCrane-instructions.pdf

 www.edscratchapp.com 119

and colour. This can help students identify and use the correct pieces as they

work through the build.

• It is strongly recommended that the magnetic hooks be set up in advance of

the build with adult supervision to ensure that these are set up correctly. Once

the hook is set up the first time, it can be used as a single part over and over

in the EdCrane build.

• The magnetic hook’s spool can spin both clockwise and counter-clockwise.

Whenever the string of the hook is fully extended out from the spool (i.e. the

string is released all the way), whichever way the hook starts to wind will

become the ‘raise hook’ direction. The opposite direction will be the ‘lower

hook’ direction.

• Remind students that they must press the play (triangle) button on the Edison

robot to run their downloaded program and override the default barcode

behaviours.

• If multiple students are running programs using the remote-control codes in

close physical proximity to each other, they may experience ‘cross-talk’ where

one robot receives and reacts to the remote-control code from a different

group. Try spacing students away from each other to minimise the issue.

• Students can download their EdScratch programs into the EdCrane before or

after they build the crane, but they will need to pair the robot with a remote

control using the barcodes before they build.

• The EdCrane build instructions also have programming instructions, including

a link to a share-code. You may opt to have students use this code, modifying

the program to match their plan and adjusting inputs as needed. Alternatively,

you can give students a modified set of the EdCrane build instructions without

the share-code and have students attempt to program the solution on their

own. The worksheet assumes students do NOT have the share-code. The

share-code can be seen at

https://www.edscratchapp.com?share=5DMQ3XDw

Answer key

Question Type Sample answer Marking
notes

1

SE

EdCrane action
Remote

code
Remote control

button

Spin the magnetic spool

clockwise
1 Volume up

Spin the magnetic spool

counter-clockwise
2 Volume down

Spin the crane clockwise 3 Keypad right

Spin the crane counter-

clockwise
4 Keypad left

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=5DMQ3XDw

 www.edscratchapp.com 120

Activity U4-2.5c Challenge up: Firefighting water cannon

Activity size Project

Delivery
recommendations

- Complete activity U4-2.5 prior to this activity
- Activities U4-2.5a, U4-2.5b, U4-2.5c, U4-2.5d and U4-
2.5e are all robotics build projects using IR messaging.
Consider using at least one.

Resources needed Basic supplies set, worksheet U4-2.5c, 1 EdCreate kit
per EdTank, 2 Edison robots per EdTank, EdTank build
instructions set (available at
https://meetedison.com/content/EdCreate/EdBuild-
EdTank-instructions.pdf), supplies for marking out the
situation set-up

Overview

This programming challenge asks students to apply their understanding of coding

concepts, including conditionals and sensing, to a real-world application. The

EdBuild programming challenge projects use the pre-set instructions and EdCreate

kits to create whichever EdBuild is needed for the scenario. This scenario uses the

EdTank. By using the EdTank as the base for their firefighting robots, students do

not need to design the engineering component and can concentrate on the

programming component of their solutions.

Students must design two programs which will work in conjunction with each other in

order to control the two robots in the EdTank and solve the firefighting scenario.

Tips and tricks

• This project is ideal for pair or group work.

• The building challenge in both this activity and activity U1-1.2e Challenge up:

Build and control the EdTank is the same.

• Students may find it easiest to first lay out all of the EdCreate pieces onto

their work surface and organise the parts into groups of the same piece type

and colour. This can help students identify and use the correct pieces as they

work through the build.

• You will need to reset the cannon and reload a rubber band each time you fire

the cannon. This should be done manually to ensure the new band is loaded

properly and that the firing ‘pin’ is pushed completely back into the starting

location.

• For best results, use the orange bands that come with your EdCreate kit in the

cannon.

• Just like many real tanks, the EdTank’s design means it will be slow to turn

left or right. When the EdCreate tracks are brand new, they may be extra

grippy, which will make the EdTank turn even slower. You can reduce the grip

by removing the tracks and lightly dusting them with talcum powder. Be sure

to knock any excess powder off the tracks before putting them back onto the

EdTank.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/EdCreate/EdBuild-EdTank-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdTank-instructions.pdf

 www.edscratchapp.com 121

• Additional information about this programming project can be found in the

EdCreate teaching guide at

https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf

• There is no ‘right’ answer, and solutions will vary depending on student-

created set-ups. However, here is what one sample solution looks like

https://www.edscratchapp.com?share=80vBNQ0d

Activity U4-2.5d Challenge up: Semi-automated digger

Activity size Project

Delivery
recommendations

- Complete activity U4-2.5 prior to this activity
- Use activity U4-2.5a to introduce using remote control
codes in programs prior to this activity
- Activities U4-2.5a, U4-2.5b, U4-2.5c, U4-2.5d and U4-
2.5e are all robotics build projects using IR messaging.
Consider using at least one.

Resources needed Basic supplies set, worksheet U4-2.5d, activity sheet U4-
6, TV/DVD remote controls, 1 EdCreate kit per EdDigger,
2 Edison robots per EdDigger, EdDigger build
instructions set (available at
https://meetedison.com/content/EdCreate/EdBuild-
EdDigger-instructions.pdf), supplies for creating the
situation set-up

Overview

This programming challenge asks students to apply their understanding of coding

concepts, including conditionals and sensing, to a real-world application. The

EdBuild programming challenge projects use the pre-set instructions and EdCreate

kits to create whichever EdBuild is needed for the scenario. This scenario uses the

EdDigger. By using the EdDigger as the base for their semi-automated digger

robots, students do not need to design the engineering component and can

concentrate on the programming component of their solutions.

Students must design two programs which will work in conjunction with each other in

order to control the two robots in the EdDigger and solve the scenario.

Tips and tricks

• This project is ideal for pair or group work.

• The building challenge in both this activity and activity U1-1.2f Challenge up:

Build and control the EdDigger is the same.

• Students may find it easiest to first lay out all of the EdCreate pieces onto

their work surface and organise the parts into groups of the same piece type

and colour. This can help students identify and use the correct pieces as they

work through the build.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf
https://www.edscratchapp.com/?share=80vBNQ0d
https://meetedison.com/content/EdCreate/EdBuild-EdDigger-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdDigger-instructions.pdf

 www.edscratchapp.com 122

• In this build, the top robot connects to the bottom robot on the third row of

studs from the front of the bottom robot. Thus, the top robot overhangs off the

back of the bottom robot by approximately 2 cm.

• Additional information about this programming project can be found in the

EdCreate teaching guide at

https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf

• There is no ‘right’ answer, and solutions will vary depending on student-

created set-ups. However, here is what one sample solution looks like

https://www.edscratchapp.com?share=5DMe54Dw

Activity U4-2.5e Challenge up: Hazardous material removal

Activity size Project

Delivery
recommendations

- Complete activity U4-2.5 prior to this activity
- Activities U4-2.5a, U4-2.5b, U4-2.5c, U4-2.5d and U4-
2.5e are all robotics build projects using IR messaging.
Consider using at least one.

Resources needed Basic supplies set, worksheet U4-2.5e, 1 EdCreate kit
per EdRoboClaw, 2 Edison robots per EdRoboClaw,
EdRoboClaw build instructions set (available at
https://meetedison.com/content/EdCreate/EdBuild-
EdRoboClaw-instructions.pdf), supplies for creating the
situation set-up

Overview

This programming challenge asks students to apply their understanding of coding

concepts, including conditionals and sensing, to a real-world application. The

EdBuild programming challenge projects use the pre-set instructions and EdCreate

kits to create whichever EdBuild is needed for the scenario. This scenario uses the

EdRoboClaw. By using the EdRoboClaw as the base for their hazardous material

removal robots, students do not need to design the engineering component and can

concentrate on the programming component of their solutions.

Students must design two programs which will work in conjunction with each other in

order to control the two robots in the EdRoboClaw and solve the scenario.

Tips and tricks

• This project is ideal for pair or group work.

• The building challenge in both this activity and activity U1-1.2g Challenge up:

Build and control the EdRoboClaw is the same.

• Students may find it easiest to first lay out all of the EdCreate pieces onto

their work surface and organise the parts into groups of the same piece type

and colour. This can help students identify and use the correct pieces as they

work through the build.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf
https://www.edscratchapp.com/?share=5DMe54Dw
https://meetedison.com/content/EdCreate/EdBuild-EdRoboClaw-instructions.pdf
https://meetedison.com/content/EdCreate/EdBuild-EdRoboClaw-instructions.pdf

 www.edscratchapp.com 123

• In this build, the top robot connects to the bottom robot on the second row of

studs from the front of the bottom robot. Thus, the top robot overhangs off the

back of the bottom robot by approximately 1 cm.

• The claw in the articulated arm of the EdRoboClaw is composed of 3 ‘fingers’

– two parallel fingers which are stationary (made from grey beams) and the

frontmost finger which moves. The row of gears in the articulated arm controls

this forward finger, including its positioning relative to the stationary fingers.

The alignment of the forward most two gears can affect how the moving finger

sits relative to the stationary fingers when the claw is fully open. When the

claw is fully open, and the EdRoboClaw is sitting on a flat surface (such as a

table or desk), the moving finger should be high enough that one of the

EdCreate grey beams can slide under it between the finger and the table. If

the moving finger is not this high, try gently separating the front of the arm and

rotating the frontmost gear by one or two teeth clockwise independently of the

next gear. You will be able to see this move the front finger. Reconnect the

gears and the arm.

• The EdRoboClaw can pick up objects with some flat surfaces. Students may

find that they are not as able to pick up and carry objects which are round,

such as a pen. Try using the 7-hole long grey beam from the EdCreate kit.

• It will be easiest to start the robot with the claw already hovering open over

the 7-hole long grey beam from the EdCreate kit representing the hazardous

material.

• Additional information about this programming project can be found in the

EdCreate teaching guide at

https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf

• There is no ‘right’ answer, and solutions will vary depending on student-

created set-ups. However, here is what one sample solution looks like

https://www.edscratchapp.com?share=rDGRoBba

Activity U4-2.5f Challenge up: Homing pigeons

Activity size Project

Delivery
recommendations

Recommended as a capstone activity following the
completion of the Let’s Explore activities from unit 4

Resources needed Basic supplies set, worksheet U4-2.5f, supplies for
creating the situation set-up

Overview

This chiefly unstructured challenge asks students to create both the physical set-up

and programming solution to get their robots to ‘act like homing pigeons’ and find

their way ‘home’. The worksheet instructions are intentionally a bit vague. There are

few set limitations, and only a minimal level of guidance is provided. This challenge

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/content/EdCreate/EdCreate-teachers-guide.pdf
https://www.edscratchapp.com/?share=rDGRoBba

 www.edscratchapp.com 124

aims to simply give students a start-point from which to explore using their creativity,

ingenuity and computational thinking skills.

Tips and tricks

• This activity works best in groups.

• This is NOT a ‘fail-proof’ activity. The physical limitations of the robot, the

design of the set-up, the precision of the programming solutions, and other

related factors all mean that even the best of solutions may not work

‘perfectly’. Encourage students to take these limitations in stride and find the

best solution they can. This can be used as an opportunity to discuss how in

the real-world, situations are frequently ‘messy’, with factors that require

compromise. Real-world applications often need us to engineer ‘as-good-as-

possible’ solutions which may never be 100% perfect.

• Programming solutions will depend heavily on the physical set-up design that

students create. Having students explain how their programming solutions

and physical designs work together is a great exercise in thinking through

real-world physical computing.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 125

Unit 5: Versatile variables
Dive into the key computational concepts of variables, data and expressions while

applying prior learning from previous units. Students round out their exploration of

EdScratch in this unit. Earlier concepts are revisited and expanded on using the

additional flexibility afforded by including variables and operators to manage data

within their programs.

Learning objectives

Students will:

• be introduced to the computer science fundamentals of variables and data

• explore how data and variables can be used with Edison using new blocks in

the ‘Data’ and ‘Operators’ categories in EdScratch

• further explore Edison’s sensors and input capabilities using variables and

operators to refine and modify behaviours in working programs

• apply computer science fundamentals such as tracing and debugging to work

through projects using sensing and variables

Key ideas: variables and storing values, data, operators and computations in

programs, tracing

Lessons and activities in this unit

This unit includes one lesson with a total of four base activities and eight extension

activities.

Lesson 1: Maths and data in EdScratch

- U5-1.1 Let’s explore expressions

- U5-1.2 Let’s explore Edison’s light sensors

o U5-1.2a Change it up: Edison the moth

o U5-1.2b Challenge up: Edison the cockroach

- U5-1.3 Let’s explore variables

o U5-1.3a Challenge up: Spiralling spider trap

o U5-1.3b Change it up: Drive a random square

- U5-1.4 Let’s explore using variables with sensor data

o U5-1.4a Challenge up: Edison the sprinter

o U5-1.4b Change it up: Edison-controlled flag machine

o U5-1.4c Change it up: Hey Edison, where do I go?

o U5-1.4d Change it up: The Edison chorus

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 126

Lesson 1: Maths and data in EdScratch
This lesson, which introduces the final unexplored sections of the EdScratch

language, focuses on data. While block-based programming languages often

remove the need for users to get into the details of data in programming, developing

a basic working understanding of this fundamental computer science component is a

critical part of developing students’ digital literacy and in preparing them for text-

based programming languages.

Variables, which can be created and utilised through the special ‘Data’ category in

EdScratch, are introduced and then explored in this lesson. Students learn how

variables are used to store values. Students experiment with using and manipulating

data in working EdScratch programs, including using data gathered with Edison’s

inbuilt sensors. The concept of using maths in programming, including the important

practice of using expressions, is introduced along with the related blocks from the

‘Operators’ category in EdScratch. The practice of tracing code is also explored and

practised.

This lesson has a total of four base activities and eight extension activities:

- U5-1.1 Let’s explore expressions

- U5-1.2 Let’s explore Edison’s light sensors

o U5-1.2a Change it up: Edison the moth

o U5-1.2b Challenge up: Edison the cockroach

- U5-1.3 Let’s explore variables

o U5-1.3a Challenge up: Spiralling spider trap

o U5-1.3b Change it up: Drive a random square

- U5-1.4 Let’s explore using variables with sensor data

o U5-1.4a Challenge up: Edison the sprinter

o U5-1.4b Change it up: Edison-controlled flag machine

o U5-1.4c Change it up: Hey Edison, where do I go?

o U5-1.4d Change it up: The Edison chorus

A special note about this lesson

The primary focus of this lesson is variables and data, two of the most fundamentally

important parts of general purpose programming languages. It’s not uncommon for

students (and instructors!) to feel like there is a bit of a stretch between prior units

and the contents of this lesson, especially if this is your first time working with

variables. Learning about variables and maths in programming is an important step

in meaningful computer science education. Just like anything that is brand new,

becoming comfortable with maths and variables in programs can take some time.

Encourage students to be patient with themselves as they work through the

activities. They will soon see the creative potential these new skills unlock inside

programming!

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 127

Activity U5-1.1 Let’s explore expressions

Activity size Small

Delivery
recommendations

Resources needed - Worksheet U5-1.1
- Optional: Programming devices to look at ‘operators’ in
EdScratch

Overview

This offline-activity introduces the concept of expressions in coding and

demonstrates how computations can be used inside of expressions. The fact that all

computer languages use numbers and mathematics is also discussed. Developing

an understanding of how expressions and maths work offline builds students’

capacity to engage in more complex computational thinking, enabling them to use

these elements with confidence in EdScratch programs in later activities.

Many people have a fear that computer programming requires intense amounts of

complicated mathematics. For many programming languages, including EdScratch,

this is simply untrue. However, using expressions is required to do some things in

EdScratch and to use some of Edison’s sensors in meaningful ways. Likewise, being

able to use basic maths, such as arithmetic, inside EdScratch programs allows

students to do more interesting things with the robots and use Edison’s sensors and

data in more creative and exciting ways.

The idea of tracing is also introduced in this activity. The formal practice of tracing

involves stepping through a program line by line, recording important values. Code

traces are often done to help debug code but can also be useful when you just need

to understand what is happening in a program, or what will happen when an input

has a different value. While the need to record values in EdScratch is limited, this

activity gets students familiar with working through computations, enabling them to

develop the habit of tracing through programs in future activities.

Tips and tricks

• Binary is not taught in the EdScratch lessons. This activity does make

mention of the fact that ‘without a computer language, you would need to write

every single command using nothing but 1s and 0s,’ which is a nod to the fact

that all computers operate using binary. If you are teaching binary, consider

tying a separate lesson on binary into this activity.

• When it comes to expressions and any mathematics in EdScratch programs,

it is important to note that Edison can only handle integers. Likewise, Edison

can only work in ‘real’ mathematics. If students put in computations which, for

example, divide by zero, they may get errors, or the robot may behave in

unexpected ways.

• While not required in the worksheet, you may choose to have students look at

the ‘operators’ category in EdScratch to find the six blocks used in

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 128

expressions and begin to piece together how the blocks can be used in

EdScratch programs.

Answer key

Question Type Answer Marking notes

1

EA

Meaning: Is 2*2 the same as 4?
Resolves to: True

2

EA

Meaning: Is 2 greater than or equal to 4?
Resolves to: False

3

EA

Meaning: Is 2 + 2 not equal to 4?
Resolves to: False

4

EA

Meaning: Is 2-1 less than 4-1?
Resolves to: False

Activity U5-1.2 Let’s explore Edison’s light sensors

Activity size Large

Delivery
recommendations

- Complete activity U4-2.2 prior to this activity
- Complete activity U5-1.1 prior to this activity

Resources needed Basic supplies set, worksheet U5-1.2

Overview

This activity introduces Edison’s visible light sensors, explains how the sensors work,

and then explores using the sensors with expressions to make two different

EdScratch programs. In order to effectively use Edison’s visible light sensors, which

detect visible light and feed the result back to Edison as a light reading, students

need to understand the concepts of events and conditionals as well as be able to

use expressions in EdScratch programs.

More than with any other sensor, using the light sensors exemplifies the idea that

sensors create data and that it is this data which is used by the robot. Using the

visible light sensors in programs helps students begin to see that there are layers of

information ‘behind the scenes’ of block-based programming languages. Developing

an appreciation for this fact helps prepare students to work with more creative and

complex programs in EdScratch as well as setting the groundwork for moving into

text-based languages, such as EdPy.

Tips and tricks

• When it comes to expressions and any mathematics in EdScratch programs,

it is important to note that Edison can only handle integers. Likewise, Edison

can only work in ‘real’ mathematics, so if students put in computations which,

for example, divide by zero, they may get errors, or the robot may behave in

unexpected ways.

• If an operator input parameter is left blank in an EdScratch program, it will be

read as ‘0’ (zero) by the robot.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://meetedison.com/robot-programming-software/edpy/

 www.edscratchapp.com 129

o The operator may display NaN in the input parameter space in this

case, which stands for ‘not a number’.

• Edison will detect all ambient visible light and is unable to determine the

source of the light. Take into consideration how bright or dark the room is

when testing programs using Edison’s light sensors.

• Encourage students to test different values in the expressions they are using

with light sensor readings to find what works best with their robot in the

environment where they are running their program.

Answer key

Question Type Sample answer Marking
notes

1

RC

Activity U5-1.2a Change it up: Edison the moth

Activity size Medium

Delivery
recommendations

Complete activity U5-1.2 prior to this activity

Resources needed Basic supplies set, worksheet U5-1.2a, torches
(flashlights)

Overview

Students explore how to use Edison’s light sensors together to create a program for

Edison which makes the robot mimic phototrophic behaviour. The fact that the light

sensors store light readings as numerical values, enabling those values to be

compared to each other using operators in an expression, is demonstrated in this

activity.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 130

Tips and tricks

• You will need a torch (flashlight) and a flat surface located away from any

other sources of bright light, such as sunlight or overhead fluorescents.

• Once Edison ‘sees’ the bright source of light, the robot will drive towards it. By

moving the torch, you can control where Edison drives.

• If the environment is brighter than the torch, Edison won’t be able to detect

the torch, and will not respond as expected.

• The ‘moth’ program in this activity should function the same way as the

program activated by the ‘follow a torch’ barcode program. You may choose

to have students revisit that barcode to see how their program compares to

the barcode program.

• One programming solution can be seen at

https://www.edscratchapp.com?share=80vEnJYd

Activity U5-1.2b Challenge up: Edison the cockroach

Activity size Medium

Delivery
recommendations

- Complete activity U5-1.2 prior to this activity
- This activity builds on concepts demonstrated with more
explanation in U5-1.2a. Consider using this as an
extension to that activity.

Resources needed Basic supplies set, worksheet U5-1.2b, torches
(flashlights)

Overview

Students explore how to use Edison’s light sensors together to create a program for

Edison making the robot mimic negative phototrophic behaviour. The fact that the

light sensors store light readings as numerical values, enabling those values to be

compared to each other using operators in an expression, is demonstrated in this

activity.

Tips and tricks

• You will need a torch or flashlight and a flat surface located away from any

other sources of bright light, such as sunlight or overhead fluorescents.

• Once Edison ‘sees’ the bright source of light, the robot should drive in the

opposite direction. By moving the torch, you can control where Edison drives.

• If the environment is brighter than the torch, Edison won’t be able to detect

the torch, and will not respond as expected.

• The ‘cockroach’ program is effectively the same as the ‘moth’ program from

activity U5-1.2b, but the logic of how the robot should respond to light is

inverse.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=80vEnJYd

 www.edscratchapp.com 131

Answer key

Question Type Sample answer Marking notes

1

SE Forever
if right light sensor > left light sensor

go left
else

go right

Activity U5-1.3 Let’s explore variables

Activity size Large

Delivery
recommendations

Resources needed Basic supplies set, worksheet U5-1.3

Overview

The concept of variables, one of the fundamental components of code, is introduced

in this activity. The worksheet explains how variables work, then has students trace a

program using a variable to understand the value of that variable at different points in

the program. Understanding how variables work and how the value of a variable can

change will allow students to create their own programs using variables.

Even though EdScratch enables students to write many programs without using

variables, the full scope of the language can only be tapped into by using variables.

Created and managed using the ‘Data’ category in EdScratch, variables function

differently than other blocks in the language. Spending the time to work through this

somewhat explanation-heavy activity will help students gain mastery over creating

and using variables in meaningful programs.

Tips and tricks

• Only variable names using legal characters will be able to be compiled and

sent to Edison. If students get error messages when they try to download a

program with variables, check the variable’s name.

• For a refresher on using Edison’s ‘set motors’ blocks, refer to activity U2-2.5

Let’s explore Edison’s motors.

• Binary is not taught in these lessons and, therefore, the ‘bit shift’ blocks are

not included in the student worksheets. If you are teaching binary, you might

choose to use the ‘bit shift’ blocks in an extension lesson on variables and

binary.

• When it comes to expressions and any mathematics in EdScratch programs,

it is important to note that Edison can only handle integers. Likewise, Edison

can only work in ‘real’ mathematics, so if students put in computations which,

for example, divide by zero, they may get errors, or the robot may behave in

unexpected ways.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 132

• If an operator input parameter is left blank in an EdScratch program, it will be

read as ‘0’ (zero) by the robot.

o The operator may display NaN in this case, which stands for ‘not a

number’.

• Whenever students want to use a variable or an operator block inside a ‘wait’

block, they must use the ‘wait () milliseconds’ block. (The other wait block

cannot except bubble-shaped blocks as input parameters). The reason this

block is in milliseconds instead of seconds has to do with a limit regarding

how Edison can compute math. Essentially, Edison doesn't know what

decimals are. Therefore, 0.3 seconds when stored in Edison is rounded and

becomes 0 seconds. This makes doing any sort of maths wildly inaccurate. By

using milliseconds, we can represent 0.3 seconds as 300 milliseconds, which

is a number Edison understands. This enables computations to be performed

without gross rounding errors.

o The other inputs which are in seconds in EdScratch can accept

decimals in the input parameters. The compiler that converts the

EdScratch code before it is sent to Edison converts all time inputs in

these blocks into milliseconds before the values are sent to Edison.

• If your students have already studied basic algebra, you may choose to

demonstrate that the values table in this worksheet can be filled out by

thinking of the three columns as n, n*200, and n+1.

• Due to minor mechanical differences in the motors and encoders inside

different Edison robots, students may need to adjust the input parameters of

the drive block related to the turn in this program to suit their robots. To

improve accuracy, students can also add either a ‘stop motors’ block or a

‘wait’ block with a sort input value (e.g. .2 secs) in-between the drive

commands (including at the bottom of the code inside the loop).

• If students are struggling to see the pattern Edison makes when running this

program, try attaching a pen to Edison so that the robot ‘draws’ the shape as

it moves. To make attaching a pen quick and easy, consider making a 3D-

printed pen holder, such as the one available at

https://www.thingiverse.com/thing:2949946

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.thingiverse.com/thing:2949946

 www.edscratchapp.com 133

Answer key

Question Type Answer/Sample answer Marking notes

1

EA

In
loop

Starting
value of

DriveLength

Wait block
input value

(in
milliseconds)

New value
of

DriveLength

1 1 200 2

2 2 400 3

3 3 600 4

5 5 1000 6

7 7 1400 8

10 10 2000 11

2

SE This program makes Edison drive in a
right-angled spiral that grows out from
the middle.

Students should note
that the robot drives
in an outward
spiralling pattern.

3

SE The code uses a variable which
increases by 1 in each loop repetition.
Because the variable is multiplied by
200 and that becomes the value of the
‘wait’ block, the ‘wait’ time grows
longer each loop. This means the
robot ends up driving longer each
loop, causing the robot to drive in an
outwards spiral.

Students should
identify that the
increasing value of
the variable increases
the time the motors
‘wait’ while ‘set to
drive forwards’ which
increases the
distance of each leg
driven.

Activity U5-1.3a Challenge up: Spiralling spider trap

Activity size Medium (main activity)
Large (main activity + bonus engineering challenge)

Delivery
recommendations

Complete activity U5-1.3 prior to this activity

Resources needed - Basic supplies set, worksheet U5-1.3a
- Optional: Supplies for making the ‘spider silk’,
worksheet U5-1.3 (for reference)

Overview

Building on the programming concepts explored in activity U5-1.3, this extension

activity asks students to re-imagine the ‘spiral-out’ program from activity U5-1.3 to be

a spiral-in program instead. Designed to be a stepping-stone activity to help students

explore using variables and computations in self-created programs, this activity

challenges students to think through the logic of the ‘spiral-out’ program in order to

modify and reapply its main components.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 134

An extra ‘mini challenge’ attached to this activity offers students an opportunity to

mix computer programming and physical engineering to turn their robots into trap-

laying, spiralling spiders.

Tips and tricks

• You may want to review the ‘spiral-out’ program from activity U5-1.3 to help

students begin to work out their ‘spiral-in’ programs.

• Remind students to use good variable names and avoid illegal characters in

their variable’s name.

• Engineering a way to leave the ‘spider silk’ AND get that ‘silk’ to stay in place

(rather than get pulled along and out of shape by the robot as it moves) is not

a fail-proof activity. Many factors; including the types of materials that

students use, the way they attach (or don’t attach) the string (or other

substance) to the robot and driving surface, the speed at which the robot

drives, etc; will affect how successful they are in this bonus activity. Students

may not be able to create a way of completing this extra challenge ‘perfectly’.

That’s fine! The key learnings will come from the process of experimentation

and problem-solving, not the final outcome.

o If students want to see the shape their robot makes but skip the string,

consider having them attach a pen to the robot instead.

• An example programming solution can be seen at

https://www.edscratchapp.com?share=rDBEwzbR

Activity U5-1.3b Change it up: Drive a random square

Activity size Small

Delivery
recommendations

Complete activity U5-1.3 prior to this activity

Resources needed Basic supplies set, worksheet U5-1.3b

Overview

This activity uses a variable with the ‘random’ number block so that the value of the

variable is randomly set each time the program runs. This activity demonstrates

another way of using variables in programs in EdScratch using just set values (as

opposed to sensor data) and provides students with another opportunity to practice

using computation inside a program.

The extra ‘mini challenge’ pushes students to think about how data is being stored in

the program and challenges students to create a secondary way of using this data in

the program by getting Edison to ‘signal’ the value.

Tips and tricks

• If students are completing the mini challenge, you may want to remind them

that a variable can be used multiple times in a program.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=rDBEwzbR

 www.edscratchapp.com 135

• An example programming solution for the mini challenge can be seen at

https://www.edscratchapp.com?share=7bxNWWYZ

Answer key

Question Type Answer Marking notes

1

EA

If the random
number is:

SquareSideLength will
be:

1 500

2 1000

3 1500

4 2000

5 2500

6 3000

Activity U5-1.4 Let’s explore using variables with sensor data

Activity size Medium

Delivery
recommendations

Resources needed - Basic supplies set, worksheet U5-1.4, activity sheet U5-
1
- Optional: Supplies for marking out a test area

Overview

This activity introduces how variables and sensors can be used in combination.

There are two main ways sensor data can be used with variables: the data from

sensors can be stored in a variable, and sensor events can be used to affect

variables. The programming example in this activity focuses on the second way of

using variables and sensors together. The program increments a variable each time

an event is detected. Students see this capability in action by reading, then running a

program which gets Edison to drive, counting the black lines it detects.

While an explicit example is not shown in this activity, the idea that the value from a

sensor can be stored in a variable is important. Variables can be set to specific

values by the programmer, but can also be set by other inputs, such as a sensor

reading.

Tips and tricks

• Activity U5-1.4a is an extension to the example program in this activity. You

may choose to have students try this extra programming challenge while they

have their test area for this activity set up.

• Questions 3 and 4 on the worksheet ask students to come up with their own

idea for using sensor data in a variable in a working EdScratch program. If

you want to keep this activity shorter, consider using these questions as a

class discussion, rather than having students work on their own ideas and

program design.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=7bxNWWYZ

 www.edscratchapp.com 136

Answer key

Question Type Answer/Sample answer Marking notes

1

EA

This program first tells Edison to turn
on the line tracker and set the variable
LineCount to zero. It then tells the
robot to drive forward until LineCount
is equal to four. There is an interrupt
‘event’ in this program with a
subroutine that says that any time
Edison detects a non-reflective (black)
line, the robot should increment (add 1
to) the value of LineCount. Once that
event has triggered 4 times, the ‘until’
condition will be met and the robot will
stop driving.

Student answers
should identify the key
ideas noted in the
sample answer.

2

SE I think that the variable is called
‘LineCount’ because the information
that this variable is storing is related to
how many black lines the robot has
detected, or ‘counted’.

Student answers
should identify that the
lines detected by the
robot are being
‘counted’ using this
variable to store the
ongoing count.

3

SE My idea is to use Edison’s obstacle
detection to track how many people
walk into my room when I’m not home.
I can store the number of obstacles
detected (i.e. people who walk past
Edison) in a variable, increasing the
value by 1 for each obstacle detected.
Then I can get the program to beep a
number of times equal to that variable
when I push the round button, telling
me how many people came in.

4 SE I was able to write my program, but it
took a few tries.
https://www.edscratchapp.com?share
=RDaGLe0V My first version didn’t
have the ‘forever’ loop with the main
program, so it ended really quickly and
didn’t work. I also realised I needed to
reset the variable once I had checked
the detector so that it wouldn’t just
keep adding all of the new obstacles
to old ones. In testing, I did notice that
sometimes just one person walking in
front of Edison would get stored as
multiple obstacles detected, so this
system isn’t perfect, but it does work!

It’s possible that
students will have
come up with an idea
that cannot be brought
to fruition.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=RDaGLe0V
https://www.edscratchapp.com/?share=RDaGLe0V

 www.edscratchapp.com 137

Activity U5-1.4a Challenge up: Edison the sprinter

Activity size Medium

Delivery
recommendations

Complete activity U5-1.4 prior to this activity

Resources needed - Basic supplies set, worksheet U5-1.4a, activity sheet
U5-1
- Optional: Supplies for marking out a test area

Overview

Designed as an extension activity for the program example in activity U5-1.4, this

programming challenge has students apply their understanding of sensor events and

variables to get the robots to track events and modify outputs accordingly. By

changing the robot’s output each time a variable’s value changes, students can see

that the variable’s value is actually changing, helping to make the idea of data in

variables more tangible.

Tips and tricks

• To see the speed change clearly, it is best to use a larger test area. You may

also want to advise students to change speed by more than one each time.

For example, start at speed 1, then increase to speed 3 from the first line.

• This activity is an extension to the example program in activity U5-1.4. You

may choose to have students try both programming challenges while they

have their test area set up.

• An example programming solution can be seen at

https://www.edscratchapp.com?share=Eb1j5aDm

Activity U5-1.4b Change it up: Edison-controlled flag machine

Activity size Project

Delivery
recommendations

- Complete activity U5-1.4 prior to this activity
- Activities U5-1.4b, U5-1.4c and U5-1.4d all use
variables to store and use IR messaging values.
Consider using at least one.

Resources needed Basic supplies set, worksheet U5-1.4b, maker space
supplies for creating the flags, EdCreate kits and/or other
supplies for attaching the flags

Overview

This activity dives into storing data from one of Edison’s sensors as a value in a

variable. Edison’s IR messaging allows multiple Edison’s to send and receive

messages. The robots can send and detect 256 different messages. These unique

messages can be used to trigger different behaviours in the receiving robot,

depending on what message it detects.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=Eb1j5aDm

 www.edscratchapp.com 138

This semi open-ended project challenges students to create a physical computing

solution with real-world applications, applying their understanding of coding

concepts, including conditionals, sensing, and using variables to store data. Students

collaborate using two Edison robots to create a controller bot (message sender) and

flag machine (message receiver) which work together. The sending robot needs to

be able to send out one or two separate messages, depending on the button that is

pressed. The receiving robot needs to react differently to each of those messages,

generating a different output depending on which message it receives.

A special note on variables and IR message data

When using IR messages in programs using specific messages to trigger different

events, students might set up their programs without a variable, using just an

expression to check the IR message value:

As far as programming procedure goes, this isn’t ideal.

The convention in computer programming is to save any sensor data into a variable.

Then, if your program uses multiple ‘if’ checks in the code, you have the program

check the variable multiple times, rather than read the sensor multiple times. This is

because the sensor could change while the checks are occurring.

In EdScratch in particular, students will discover that the ‘IR message = 20’ code in

the above program will never run. This is due to how Edison deals with IR message

data in EdScratch. Once the robot processes the ‘if’ statement in the ‘if-else’ code

block, the value of the message has been read, and so the value is cleared from the

register. If that message did not equal 10, the ‘if’ code will not run, but the IR register

is still reset to ‘0’. Therefore, the second ‘if’ (inside the ‘else’) only ever sees a value

of ‘0’ and never runs.

Computers which use sensors often clear the sensor registry in similar ways, making

this an excellent example of why it’s much better to get into the habit of using

variables to store data, rather than rely on a sensor read directly.

Tips and tricks

• You may want to review how IR messaging works with Edison prior to this

activity using activity U4-2.5 Let’s explore messaging with Edison.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 139

• Students are welcome to build a flag machine in a different way to the project

description in this activity or to come up with their own IR message detecting

creation.

• A variation of this activity using TV/DVD remote controls is included in Unit 4,

activity U4-2.5a Change it up: Remote-controlled flag machine. You may

choose to reference these two activities when using either or run them as two

programming challenges for the one build design.

• There is no ‘right’ answer, but here is what one sample solution looks like:

o Physical design:

o Program set: https://www.edscratchapp.com?share=V0eg4KDa

Answer key

Question Type Sample answer Marking notes

1

SE •When you press the round button on
the controller bot, it will send IR
message _10_, and that will tell the
flag machine to show the _’no’_ side
of the flag.
•When you press the triangle button
on the controller bot, it will send IR
message _20_, and that will tell the
flag machine to show the _’yes’_ side
of the flag.

Students should use
this to help them in
their design process.
Values and movement
should be reflected in
their ‘flag machine’
program.

Activity U5-1.4c Change it up: Hey Edison, where do I go?

Activity size Project

Delivery
recommendations

- Complete activity U5-1.4 prior to this activity
- Activities U5-1.4b, U5-1.4c and U5-1.4d all use
variables to store and use IR messaging values.
Consider using at least one.

Resources needed Basic supplies set, worksheet U5-1.4c, maker-space
materials for creating the test space

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=V0eg4KDa

 www.edscratchapp.com 140

Overview

This activity dives into storing data from one of Edison’s sensors as a value in a

variable. Edison’s IR messaging allows multiple Edison’s to send and receive

messages. The robots can send and detect 256 different messages. These unique

messages can be used to trigger different behaviours in the receiving robot,

depending on what message it detects.

This semi open-ended project challenges students to design a test space and create

multiple programs getting two Edison robots to use IR messaging to complete a

branching maze. Designed to be done as a collaborative project, students need to

work together to design their treasure maze, program their two robots in line with

their maze, and be able to change the sending commands to get the driver bot to

any end location in the maze. To create a successful outcome in this project,

students need to combine the various concepts they have learned including

sequence, conditionals, sensing, and using variables with data.

Tips and tricks

• This project can be done in pairs but is ideal for groups.

• If this is your first activity using variables and IR message data, you may want

to read the Special note on variables and IR data in the overview of activity

U5-1.4b of this guide.

• A great way to test students when they have completed this project is to

assign the students the location of the treasure. Students should be able to

then demonstrate a successful outcome by changing just the navigator bot’s

program to send the correct sequence of messages to the driver bot. When

both bots run their respective programs, the driver bot should get to the

assigned finish spot.

• Remind students to get the receiving robot running its programs before the

sending robot starts its program.

• Students’ programs will depend heavily on their treasure map design. A set of

example programs using the ‘base design’ from the worksheet as the treasure

map are included for reference:

o Driver bot: https://www.edscratchapp.com?share=RDgmq30B

o Navigator bot: https://www.edscratchapp.com?share=RDaGLj0V

• In a classroom environment, when a lot of robots are blasting IR messages,

you might have problems with cross-talk between groups. One way to

address this is to assign a limited number of IR codes (five should suffice,

depending on the student’s map) to each group for use so that their driver bot

only listens to their navigator bot (and not any other robots). Sample programs

of how to set this up follow.

▪ N.B.: In the following examples, the first student is IR codes 0-4,

the second is 5-9, 10-14, 15-19 and so on follow. This solution

will work for class sizes up to 51.

o Driver bot: https://www.edscratchapp.com?share=B0jd35Dq

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=RDgmq30B
https://www.edscratchapp.com/?share=RDaGLj0V
https://www.edscratchapp.com/?share=B0jd35Dq

 www.edscratchapp.com 141

o Navigator bot: https://www.edscratchapp.com?share=wbJv8ebj

▪ N.B.: The above samples also include a ‘a Round Button

Pressed’ event so that the driver can tell the navigator when

they are ready to start.

Answer key

Question Type Sample answer Marking notes

1

SE Our map has three paths coming out of
each junction, so we will need a total of 4
IR messages:

IR
message

value
Sending Edison

Receiving Edison
will…

10
Navigator Go left

20
Navigator Go straight

30
Navigator Go right

100
Driver Send out next command

Activity U5-1.4d Change it up: The Edison chorus

Activity size Project

Delivery
recommendations

- Complete activity U5-1.4 prior to this activity
- Activities U5-1.4b, U5-1.4c and U5-1.4d all use
variables to store and use IR messaging values.
Consider using at least one.

Resources needed Basic supplies set, worksheet U5-1.4d, sheet music or
access for students to look up songs

Overview

This activity dives into storing data from one of Edison’s sensors as a value in a

variable. Edison’s IR messaging allows multiple Edison’s to send and receive

messages. The robots can send and detect 256 different messages. These unique

messages can be used to trigger different behaviours in different receiving robots.

This semi open-ended project challenges students to collaborate to get multiple

Edison robots to use IR messaging to trigger different actions. This project highlights

what is possible when programming using multiple different IR messages by using

the various messages to not only trigger different outputs but also to have multiple

robots check and react to messages. To create a successful outcome in this project,

students need to combine the various concepts they have learned including

sequence, conditionals, sensing, and using variables with data.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=wbJv8ebj

 www.edscratchapp.com 142

Tips and tricks

• This project needs a minimum of 3 Edison robots, but works great with 4+

robots, making it ideal for groups.

• If this is your first activity using variables and IR message data, you may want

to read the Special note on variables and IR data in the overview of activity

U5-1.4b of this guide.

• Consider giving your students some song options or sheet music to use in this

activity. Good options for songs in a round include:

o Row, Row, Row Your Boat

o Three Blind Mice

o Frère Jacques

o Farmer in the Dell

• To help minimise the chance of robots missing IR messages, suggest

students run this program with the performer bots in an arch facing the

conductor bot.

• If multiple groups are running programs near each other using the same

message values, they may experience cross-talk between groups.

• Remind students to get the receiving robots running their programs before the

sending robot starts its program.

• A similar programming challenge to this activity is included in Unit 2 in activity

U2-2.3a Change it up: Play a song in a round. That activity has students use

wait blocks to time each robot’s start. You may choose to use activity U2-2.3a

Change it up: Play a song in a round and this activity together, highlighting the

advantages and disadvantages of each approach.

• Clearing IR data with the ‘clear IR message data’ block after a variable has

been set with the IR message value helps minimise issues when using

multiple IR messages in a program by clearing old data from the robot’s

memory. Encourage students to clear the IR data as a next action after setting

the variable’s value with that IR data.

• Students’ programs will depend heavily on their song choice. A set of example

programs using four robots playing Row, Row, Row Your Boat are included

for reference:

o Conductor bot: https://www.edscratchapp.com?share=ZDRedPby

o Performer bots: https://www.edscratchapp.com?share=QbOQ3OYk

Answer key

Question Type Sample answer Marking notes

1

SE Our performer bots will play ‘Row, Row,
Row your boat’, and each new bot will join
in when its predecessor finishes the first
verse.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=ZDRedPby
https://www.edscratchapp.com/?share=QbOQ3OYk

 www.edscratchapp.com 143

2

SE We have three performer bots, so we will
need a total of 5 IR messages:

IR
message

value

Sending
Edison

Receiving
Edison

Receiving
Edison’s

action

10
Conductor

Performer

#1
play

1
Performer #1 Conductor

send play
command to
performer # 2

20
Conductor

Performer

#2
play

2
Performer #2 Conductor

send play
command to
performer # 3

30
Conductor

Performer
#3

play

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 144

Unit 6: Inventor’s time!

Put all of your Edison and EdScratch knowledge into action! By designing and

developing projects of their own using iterative cycles of planning, making and

testing, students put the key computational thinking, problem-solving, programming,

and physical computing concepts they have learned to work in this culmination unit.

Learning objectives

Students will:

• learn about the design-build-test cycle and strategies, such as decomposition

and iterative testing, for physical computing problem-solving

• demonstrate their understanding of key computational thinking and computer

science principals through open-ended projects

Key ideas: the design-build-test cycle, decomposition and problem solving, iterative

testing

Lessons and activities in this unit

This unit includes one lesson with a total of two base activities and five extension

activities.

Lesson 1: Design, build, test, repeat

- U6-1.1 Let’s explore the design-build-test cycle

o U6-1.1a Challenge up: Invent an imaginary creature

o U6-1.1b Challenge up: Invent a cotton ball launcher

o U6-1.1c Challenge up: Invent a burglar alarm

o U6-1.1d Challenge up: Invent a mousetrap

o U6-1.1e Challenge up: Invent a combination safe

- U6-1.2 Let’s explore a haunted house

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 145

Lesson 1: Design, build, test, repeat
With the whole of the EdScratch language explored, this lesson focuses on creative

problem-solving across both programming and physical design challenges. Students

learn about the design-build-test cycle and formal strategies for physical computing

problem-solving, including decomposition and iterative testing. These skills are then

put to the test as students demonstrate the knowledge they have gained around key

computational thinking, programming, and computer science principals through

open-ended projects.

This lesson has a total of two base activities and five extension activities:

- U6-1.1 Let’s explore the design-build-test cycle

o U6-1.1a Challenge up: Invent an imaginary creature

o U6-1.1b Challenge up: Invent a cotton ball launcher

o U6-1.1c Challenge up: Invent a burglar alarm

o U6-1.1d Challenge up: Invent a mousetrap

o U6-1.1e Challenge up: Invent a combination safe

- U6-1.2 Let’s explore a haunted house

Activity U6-1.1 Let’s explore the design-build-test cycle

Activity size Large (base tasks only)
Project (with the build)

Delivery
recommendations

Resources needed - Basic supplies set, worksheet U6-1.1, activity sheet U6-
1
- If doing build: maker-space supplies

Overview

This lesson formally introduces a structured process for creating robotic inventions

using Edison robots. While many of the activities throughout the EdScratch lessons

afford students chances to think creatively and create using Edison, this activity

provides an explicit framework for approaching physical computing projects. The

primary purpose of this activity is to introduce the creation process in a structured

way and demonstrate the value of taking the time to plan (design) – which is a major

part of programming and engineering practice. Students brainstorm possible ideas

for ‘inventions’ using Edison, then work through the process of designing both the

physical engineering component and the programming component of their chosen

idea.

Learning the design-build-test cycle and practising the design component will enable

students to achieve greater success in open-ended engineering and programming

projects, including the other activities in this lesson. Having a framework for

approaching open-ended projects helps students to focus, plan, and apply learnings

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 146

as they go. For students with lots of ideas but unfocused energy, using a framework

enables them to channel their creativity into the iteration process. For students who

lack confidence with open-ended challenges, having a structure to refer to can help

embolden them to try new things and unlock their creative potential.

Tips and tricks

• If you are running this activity as a group or whole class, consider managing

the timer for the brainstorming session. Forcing students to move onto their

next idea when the time is up will keep them on task and help get them into

the flow. It also allows you to spot any students who may have given up and

encourage them to keep going. No bad ideas in brainstorming!

• The initial brainstorming task is best done as individuals, but the review of

ideas and design portions of this activity can easily be done in partners or

groups.

• If students have decomposed their project into more than two parts, have

them use extra paper or make separate sections to design and plan each

part.

• While students do not need to actually build and program their creations to

complete the base tasks, having access to Edison and EdScratch may prove

helpful for their design process.

• The core of this activity only goes through the ‘design’ stage. The ‘mini

challenge’ is not mini – actually building and testing the ideas students have

come up with will turn this activity into a major project.

• Student ideas may or may not be possible. If you do have students attempt to

build and program their designs, remind them that even if their design is not

achievable, that doesn’t make it a failure. Look at why it is not achievable. For

example, is there a limit to how the robot works or the materials that they used

that caused it to be unsuccessful?

o Unsuccessful designs can teach just as much, if not more than,

successful designs.

Answer key

Question Type Sample answer Marking notes

1

SE Project name: EggBeater Bot. My
idea is to attach whisks to Edison’s
powered sockets and turn Edison into
a hand mixer.

2

SE There are two main parts: the
physical design and the program.
Each of these has two parts: Physical
design – 1) making the whisks and 2)
attaching the whisks to Edison.
Program design – 1) getting the
program to be able to start and stop
and 2) getting the program to move
the whisks at different speeds.

The project should
have a physical
engineering and
software programming
component.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 147

3

SE Whisks: I think I will use a pencil for
the staff for the main shaft of the
whisk, then make the blades using
strips of cut plastic from recycled
bottles. I will glue these to the pencil.
Attaching the whisks: I think I will use
mostly EdCreate parts to attach the
whisks to the wheels of Edison. That
way I won’t need to have a separate
way of attaching them into the
powered socket too.

Any combination of
drawings, diagrams,
written plans, etc is
acceptable so long as
the students’ design
plan is detailed.

The sample answer
has been deliberately
kept short – it is
intended to serve as a
possible partial
example only.

4

SE The program should use button press
events. If the triangle button is
pressed, the motors should start
turning forwards. If the round button
is pressed, the motors should move
faster one speed. The motors should
move faster each round button press
up to a top speed of 5.
Anytime the triangle button is pressed
while the motors are moving, they
should stop.

Pseudocode or any
combination of
drawings, diagrams,
written plans, etc is
acceptable so long as
the students’ design
plan is detailed.

The sample answer
has been deliberately
kept short – it is
intended to serve as a
possible partial
example only.

Activity U6-1.1a Challenge up: Invent an imaginary creature

Activity size Project

Delivery
recommendations

- Complete activity U6-1.1 prior to this activity
- Activities U6-1.1a, U6-1.1b, U6-1.1c, U6-1.1d, and U6-
1.1e all offer an open-ended project idea that requires
students to apply the design-build-test cycle. Consider
using at least one.

Resources needed Basic supplies set, worksheet U6-1.1a, maker-
space/crafting supplies, EdCreate kits/LEGO bricks

Overview

Open-ended projects, including this challenge, promote creative problem solving and

give students opportunities to find STEM applications to real-world scenarios. One of

five project options, the objective of this challenge is for students to build an

imaginary creature that can move and react to the world using at least one of

Edison’s sensors.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 148

Students apply the design-build-test cycle to this open-ended challenge. With a set

end-goal and only a few established success criteria, this activity is designed to

encourage creative problem-solving through the meaningful application of learned

skills. Students must apply their programming and computational thinking skills to

this challenge, but also need to experiment with the physical creation, which adds an

engineering component to this project.

Tips and tricks

• This project works well in pairs or small groups.

• Remind students that unsuccessful designs can teach just as much, if not

more than, successful designs. Encourage students to look at what isn’t

working in their creation through the lens of the design-build-test cycle.

Decompose what’s going on into smaller parts and problem-solve each

component.

• There is no single ‘best way’ of approaching the problem or a set solution.

Student creations can vary wildly as will the programming component of their

solutions.

Activity U6-1.1b Challenge up: Invent a cotton ball launcher

Activity size Project

Delivery
recommendations

- Complete activity U6-1.1 prior to this activity
- Activities U6-1.1a, U6-1.1b, U6-1.1c, U6-1.1d, and U6-
1.1e all offer an open-ended project idea that requires
students to apply the design-build-test cycle. Consider
using at least one.

Resources needed Basic supplies set, worksheet U6-1.1b, maker-
space/crafting supplies, EdCreate kits/LEGO bricks,
cotton balls or craft pom-poms (for launching)

Overview

Open-ended projects, including this challenge, promote creative problem solving and

give students opportunities to find STEM applications to real-world scenarios. One of

five project options, the objective of this challenge is for students to build a cotton

ball launcher that can shoot as high as possible, as far as possible, or as accurately

as possible.

Students apply the design-build-test cycle to this open-ended challenge. With a set

end-goal and choice of the objective as the only established success criteria, this

activity is designed to encourage creative problem-solving through the meaningful

application of learned skills. Students must apply their programming and

computational thinking skills to this challenge, but also need to experiment with the

physical creation, which adds an engineering component to this project.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 149

Tips and tricks

• This project works well in pairs or small groups.

• Remind students that unsuccessful designs can teach just as much, if not

more than, successful designs. Encourage students to look at what isn’t

working in their creation through the lens of the design-build-test cycle.

Decompose what’s going on into smaller parts and problem-solve each

component.

• There is no single ‘best way’ of approaching the problem or a set solution.

Student creations can vary wildly as will the programming component of their

solutions.

Activity U6-1.1c Challenge up: Invent a burglar alarm

Activity size Project

Delivery
recommendations

- Complete activity U6-1.1 prior to this activity
- Activities U6-1.1a, U6-1.1b, U6-1.1c, U6-1.1d, and U6-
1.1e all offer an open-ended project idea that requires
students to apply the design-build-test cycle. Consider
using at least one.

Resources needed Basic supplies set, worksheet U6-1.1c, maker-
space/crafting supplies, EdCreate kits/LEGO bricks

Overview

Open-ended projects, including this challenge, promote creative problem solving and

give students opportunities to find STEM applications to real-world scenarios. One of

five project options, the objective of this challenge is for students to build a burglar

alarm that uses at least one of Edison’s sensors to detect a ‘threat’ and then produce

some output to frighten off the would-be thief.

Students apply the design-build-test cycle to this open-ended challenge. With a set

end-goal and only a few established success criteria, this activity is designed to

encourage creative problem-solving through the meaningful application of learned

skills. Students must apply their programming and computational thinking skills to

this challenge, but also need to experiment with the physical creation, which adds an

engineering component to this project.

Tips and tricks

• This project works well in pairs or small groups.

• Remind students that unsuccessful designs can teach just as much, if not

more than, successful designs. Encourage students to look at what isn’t

working in their creation through the lens of the design-build-test cycle.

Decompose what’s going on into smaller parts and problem-solve each

component.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 150

• There is no single ‘best way’ of approaching the problem or a set solution.

Student creations can vary wildly as will the programming component of their

solutions.

Activity U6-1.1d Challenge up: Invent a mousetrap

Activity size Project

Delivery
recommendations

- Complete activity U6-1.1 prior to this activity
- Activities U6-1.1a, U6-1.1b, U6-1.1c, U6-1.1d, and U6-
1.1e all offer an open-ended project idea that requires
students to apply the design-build-test cycle. Consider
using at least one.

Resources needed Basic supplies set, worksheet U6-1.1d, maker-
space/crafting supplies, EdCreate kits/LEGO bricks

Overview

Open-ended projects, including this challenge, promote creative problem solving and

give students opportunities to find STEM applications to real-world scenarios. One of

five project options, the objective of this challenge is for students to build a

mousetrap that uses at least one of Edison’s sensors to trigger the trap and then

produce some output to alert the creator that the trap has been sprung.

Students apply the design-build-test cycle to this open-ended challenge. With a set

end-goal and only a few established success criteria, this activity is designed to

encourage creative problem-solving through the meaningful application of learned

skills. Students must apply their programming and computational thinking skills to

this challenge, but also need to experiment with the physical creation, which adds an

engineering component to this project.

Tips and tricks

• This project works well in pairs or small groups.

• Remind students that unsuccessful designs can teach just as much, if not

more than, successful designs. Encourage students to look at what isn’t

working in their creation through the lens of the design-build-test cycle.

Decompose what’s going on into smaller parts and problem-solve each

component.

• There is no single ‘best way’ of approaching the problem or a set solution.

Student creations can vary wildly as will the programming component of their

solutions.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 151

Activity U6-1.1e Challenge up: Invent a combination safe

Activity size Project

Delivery
recommendations

- Complete activity U6-1.1 prior to this activity
- Activities U6-1.1a, U6-1.1b, U6-1.1c, U6-1.1d, and U6-
1.1e all offer an open-ended project idea that requires
students to apply the design-build-test cycle. Consider
using at least one.

Resources needed Basic supplies set, worksheet U6-1.1e, maker-
space/crafting supplies, EdCreate kits/LEGO bricks,
TV/DVD remotes (as an option for the safe code)

Overview

Open-ended projects, including this challenge, promote creative problem solving and

give students opportunities to find STEM applications to real-world scenarios. One of

five project options, the objective of this challenge is for students to build a

combination safe that only opens when the correct sequence (code) is entered. The

code that opens the safe can be a sequence of triangle and round button presses, a

sequence of TV/DVD remote code signals, a sequence of IR messages from a

different Edison robot, or some combination of all these options.

Students apply the design-build-test cycle to this open-ended challenge. With a set

end-goal and choice of the objective as the only established success criteria, this

activity is designed to encourage creative problem-solving through the meaningful

application of learned skills. Students must apply their programming and

computational thinking skills to this challenge, but also need to experiment with the

physical creation, which adds an engineering component to this project.

Tips and tricks

• This project works well in pairs or small groups.

• Remind students that unsuccessful designs can teach just as much, if not

more than, successful designs. Encourage students to look at what isn’t

working in their creation through the lens of the design-build-test cycle.

Decompose what’s going on into smaller parts and problem-solve each

component.

• There is no single ‘best way’ of approaching the problem or a set solution.

Student creations can vary wildly as will the programming component of their

solutions.

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com

 www.edscratchapp.com 152

Activity U6-1.2 Let’s explore a haunted house

Activity size Project

Delivery
recommendations

Recommend as a capstone project for both unit 6 and the
EdScratch lesson set

Resources needed Basic supplies set, worksheet U6-1.2, maker-
space/crafting supplies, EdCreate kits/LEGO bricks, a
black work surface, white masking tape or alternative

Overview

More reminiscent of a ‘Change it up’ or ‘Challenge up’ activity, this project differs

from all the other ‘Let’s explore’ activities in the lesson plans. Designed as a

capstone project for both unit 6 and the whole of the EdScratch lessons, this activity

asks students to let their imaginations flow. By creating their own scenarios, test

environments, inventions, and programs, students have the opportunity to apply

creative problem solving and their programming and computational thinking skills.

Part design challenge, part programming challenge and part exercise in

collaboration, this project is intended to be done in groups with very few limitations or

parameters for success being pre-set. To help students get into the experimental

mindset, the first task in this project (the ghost hunter challenge) presents a more

structured scenario. What the room (test space) needs to be is established already,

and there are hints as to what needs to be included in the programming solution.

Moreover, the need to build a physical creation is removed. Once students have

solved this room, however, the boundaries disappear.

Programming is inherently creative, and much of technology exists outside of the

computer screen. This project has students finish their EdScratch experience with a

challenge that allows them to be imaginative, resourceful, and have fun. In so doing,

students solidify what they have learned, strengthen their resilience and problem-

solving capacities, and are emboldened to take the next steps in their coding and

robotics adventures.

Tips and tricks

• This project is intended to be done in groups.

• A possible solution to the ghost hunting room can be seen at

https://www.edscratchapp.com?share=B05j61bZ

• Remind students that unsuccessful designs can teach just as much, if not

more than, successful designs. Encourage students to look at what isn’t

working in their creation through the lens of the design-build-test cycle.

Decompose what’s going on into smaller parts and problem-solve each

component.

Answer key

The worksheet does have spaces for ‘answers’, but these areas do not require

marking. Have students use these areas as a loose framework and working space to

capture their designs. There are no ‘right’ answers in this project. Encourage

students to be creative, take risks, apply what they’ve learned, and have fun!

http://www.meetedison.com/
http://www.edscratchapp.com/
http://www.meetedison.com
https://www.edscratchapp.com/?share=B05j61bZ

A
p

p
en

d
ix

 1
:

B
la

n
k

d
ig

it
al

 d
is

p
la

y
n

u
m

b
er

Appendix 2: Calibrate obstacle detection
You can regulate the sensitivity of Edison’s obstacle detection system. By making

the obstacle detections system more sensitive, Edison can detect obstacles further

away. By making the system less sensitive, Edison will only detect very close

obstacles. Follow the instructions on this sheet to adjust your Edison’s obstacle

detection system.

Read the barcode

1. Place Edison on the right side of the barcode, facing the barcode.
2. Press the record (round) button three times.
3. Wait while Edison drives forward, scanning the barcode.

Set maximum sensitivity

After scanning the barcode, set Edison down on a table or desk and remove any

obstacles in front of Edison. Then press the play (triangle) button. Edison is now in

calibration mode.

The left sensitivity is calibrated first.

1. Repeatedly press the play (triangle) button, which increases sensitivity, until

the red LED on the left is flickering.

2. Repeatedly press the record (round) button, which decreases the sensitivity,

until the LED completely stops flickering.

3. Press the stop (square) button to switch over to calibrate the right side.

4. Repeatedly press the play (triangle) button until the right red LED is flickering.

5. Repeatedly press the record (round) button until the LED completely stops

flickering.

6. Press the stop button to complete the calibration.

Special note: custom sensitivity

It is possible to set the distance that obstacles are detected. To do this, scan the

‘calibrate obstacle detection’ barcode, place an obstacle in front of Edison at the

distance you want Edison to detect obstacles, press the play button and then repeat

steps 1 through 6 to set the sensitivity.

Barcode – Calibrate obstacle detection

